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Empirical Risk Minimization

● Training dataset: i.i.d. input-output pairs {(x̂i, ŷi)}Ni=1 drawn
from the distribution P;

● As the true distribution P is typically not known, one
considers the empirical risk minimization (ERM) problem

inf
β
{E
(x,y)∼P̂N

[ℓ(fβ(x), y)] =
1

N

N

∑
i=1

ℓ(fβ(x̂i), ŷi)} ,

where

P̂N ∶=
1

N

N

∑
i=1

δ(x̂i,ŷi)

is the empirical distribution associated with the training
dataset.
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Typical Example

● Logistic regression (LR) — classification problem

● input-output data: x ∈ Rn, y ∈ {−1,+1};
● family of linear functions: x→ fβ(x) ∶= βTx;

● log-loss: ℓ(µ, ν) = log(1 + exp(−µν));
● ERM problem:

inf
β

1

N

N

∑
i=1

log(1 + exp(−ŷiβT x̂i));
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Overfitting and Regularization
● A well-known issue with ERM is overfitting.

● estimator β⋆ works well on training dataset but generalizes
poorly → E(x,y)∼P̂N

[ℓ(fβ⋆(x), y)] and E(x,y)∼P[ℓ(fβ⋆(x), y)]
are far apart.

● A standard approach to deal with this is regularization:

inf
β
{E
(x,y)∼P̂N

[ℓ(fβ(x), y)] + ϵR(fβ)} .

● hard to choose the hyperparameter ϵ;

● justification often relies on additional assumptions [Kakade
et al., 2009].

● Distributionally robust optimization (DRO) — a fresh
perspective on regularization [Shafieezadeh-Abadeh et al.,
2019, Namkoong and Duchi, 2017, Gao et al., 2017];
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DRO Formulation

● Instead of ERM, consider minimizing the worst-case expected
loss

inf
β

sup
Q∈Bϵ(P̂N )

E
(x,y)∼Q[ℓ(fβ(x), y)], (⋆)

where Bϵ(P̂N), the so-called ambiguity set, is a set of
distributions around P̂N . That is,

Bϵ(P̂N) = {Q ∶D(Q, P̂N) ≤ ϵ},

where D(⋅, ⋅) is a certain probability discrepancy.

● How to choose the probability metric D(⋅, ⋅)? E.g.,
moment-based/ f -divergence/ Wasserstein distance.

● asymptotic consistency;

● support of the worst-case distribution Q;

● tractability;
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Wasserstein Distance

W (α,β) ∶= inf
π∶z∼α,z′∼β

E(z,z′)∼π[d(z, z′)],

where

● z = (x, y) is the input-output pair;

● d(z, z′) is the transport cost between
z and z′;

● π is a joint distribution (z, z′).

Specifically, we have

● Bϵ(P̂N) = {Q ∶W (Q, P̂N) ≤ ϵ}.

Remarks

The worst-case distribution Q may have different support from P̂N

and is capable of generating new examples within small
perturbation.
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Connect with Regularization and Adversarial Robustness

Lipschitz Regularization Adversarial Robustness

Wasserstein DRO

Heuristic

Figure 1: Connections among Wasserstein DRO, Generalized Lipschitz
Regularization [Cranko et al., 2021], and Adversarial Robustness [Sinha
et al., 2018]

Wasserstein DRO is a quite powerful modeling tool!
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Main Question

Can we address Wasserstein DRO in a tractable way?
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Wasserstein DRO with Linear Hypothesis Space

● Binary classification problem x ∈ Rn and y ∈ {+1,−1};

● Generalized linear model, fβ(x) = βTx;

● Convex Lipschitz continuous loss, e.g., log-loss, hinge loss,
smooth hinge loss;

● d((x, y), (x′, y′)) = ∥x − x′∥p + κ
2 ∣y − y

′∣ with κ > 0 and ∥ ⋅ ∥
denotes the ℓp-norm on Rn where p = {1,2,+∞};

● The parameter κ can be viewed as the reliability of the labels.

Wasserstein DRO (⋆) admits a tractable conic reformulation!
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Tractable Convex Reformulation

Theorem

(cf.Theorem 14 (ii) in [Shafieezadeh-Abadeh et al., 2019]) If
fβ(x) = βTx and ℓ(⋅, ⋅) is Lipschitz continuous, Problem (⋆) is
equivalent to

inf
λ,β,s

λϵ + 1

N

N

∑
i=1

si

s.t. ℓ(βT x̂i, ŷi) ≤ si, i ∈ [N],
ℓ(βT x̂i,−ŷi) − λκ ≤ si, i ∈ [N],
Lip(ℓ)∥β∥q ≤ λ.

(∆)

Here, 1
p +

1
q = 1 for p ∈ {1,2,+∞}.
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Algorithm Design for Wasserstein DRO

● Rely on general-purpose solvers (i.e., Gurobi, Mosek,
YALMIP) — scalability issue /;

● Stochastic gradient descent (SGD) type algorithms for DRO
problems [Sinha et al., 2018] — strong assumptions /;

● error free — κ = +∞;

● smoothness assumption for loss functions;

● strong convexity for the transport cost;

Our Target

How can we develop provably efficient algorithms tailored to a
broad class of Wasserstein DRO problems?
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The Principle of Algorithm Design

● Close the theoretical and computational gap

● provable algorithms but slow practical implementations /;

● practically fast algorithms without theoretical guarantees /;

Guideline for Algorithm Design

The practical efficiency indeed relies on how the algorithm exploits
the problem-specific structure.
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Identify the Key Structures

Reformulate (∆) as a compact form1,

min
β,λ≥0

λϵ + 1

N

N

∑
i=1

max{L(βT ẑi), L(−βT ẑi) − λκ}

s.t. Lip(L)∥β∥q ≤ λ.
(1)

● Training data ẑi = ŷi ⋅ x̂i;

● λ: one-dimensional search?

● β-subproblem: two non-separable non-smooth terms /;

1For simplicity, L(βT ẑi) = ℓ(ŷi, β
T x̂i).
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Key Ideas

● Golden section search for λ⋆ — establish a tight upper bound
λU for the optimal λ⋆ ;

● iLP-ADMM for the resulting β-subproblem

● operator splitting — prototypical form

min
β,µ

f(µ) + g(µ) + p(β)

s.t. Zβ − µ = 0
(2)

● f(⋅) : convex and gradient Lipschitz continuous Lf > 0;
● g(⋅) : convex and non-differentiable with the separable

structure and closed-form proximal mapping;

● p(⋅) = I{∥⋅∥q≤λ};
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Wasserstein DRO with Linear Hypothesis Space

Table 1: Three Representative Learning Models

Loss function L(z) f(µ) gi(µi)

log(1 + exp(−z)) 1
N

N

∑
i=1
(L(µi) + 1

2(µi − λκ)) 1
2 ∣zi − λκ∣

max (1 − z,0) 0 max (1 − µi,1 + µi − λκ,0)
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1
2 − z z ≤ 0
1
2(1 − z)

2 0 < z < 1
0 z ≥ 1

0 PLQ*

* piecewise linear-quadratic functions;

● Log-loss, hinge loss and smooth hinge loss;

● g(µ) = 1
N ∑

N
i=1 gi(µi);
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Theoretical Upper Bound for λ⋆

Proposition

Suppose that (β⋆, λ⋆, s⋆) is an optimal solution to Problem (∆).
Thus, we have

1. If L(z) is log-loss, we have λ⋆ ≤ λU = 0.2785
ϵ .

2. If L(z) is smooth hinge loss, we have λ⋆ ≤ λU = 0.5
ϵ .

3. If L(z) is hinge loss, we have λ⋆ ≤ λU = 1
ϵ .

● q(λ) = inf
β
Ω(λ,β) is a unimodal function on R.

● Ω(λ,β) = λϵ + 1
N ∑

N
i=1max{L(βT ẑi), L(−βT ẑi) − λκ} + I{∥β∥q≤λ}.
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Inexact Linearized Proximal ADMM (iLP-ADMM)

The augmented Lagrangian function is defined by

Lρ(β,µ;w) = f(µ) + g(µ) + p(β) −wT (Zβ − µ) + ρ

2
∥Zβ − µ∥2,

where w ∈ RN is the multipliers and ρ is the penalty parameter.

● Ad-hoc linearized technique for µ-update

µk+1 = argmin
µ

{∇f(µk)Tµ + g(µ) − ⟨wk, Zβk+1 − µ⟩ + ρ

2
∥µ −Zβk+1∥2} ;

● closed-form proximal mapping for g(µ);
● exempt from the step size selection procedure;

● Dynamically adjusting the penalty parameter

● ρk+1 ≥ ρk, e.g., geometrically increasing the penalty parameter;
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iLP-ADMM (Cont’d)

● Solving the β-subproblem in an inexact way

βk+1 ≈ argmin
β∈Rn

{Lρk+1(β,µ
k;wk) + 1

2
∥β − βk∥2S} ;

● select a positive semidefinite matrix S such that [S;Z] has full
column rank;

● convex quadratic problem with an ℓq-ball constraint —
accelerated projected gradient descent;

● the error condition ∥dk+1∥ ≤ ξk+1,

dk+1 ∈ ∂βLρk+1
(βk+1, µk;wk) + S(βk+1 − βk);
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Convergence Analysis of iLP-ADMM

● The residual function we utilized to conduct the analysis,

rKKT(β,µ,w) ∶= d2(0,∇f(µ)+∂g(µ)+w)+d2(0, ∂p(β)−ZTw)+∥Zβ−µ∥2.

Theorem (Informal Statement)

If sup
k≥1

ρk ∈ (3Lf ,+∞) and the error condition ∑∞k=1 ξk <∞ holds,

we have

1. The sequence {(βk+1, µk+1,wk+1)}k≥0 converges to a KKT
point of Problem (2).

2. The KKT squared residual rKKT(βK , µK ,wK) converges with
rate o( 1

K ), i.e.,

min
1≤k≤K

{rKKT(βk, µk,wk)} = o( 1
K
) .
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Numerical Results
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Wall-clock Time Comparison with the YALMIP

Table 2: Wall-clock Time Comparison on UCI Adult Datasets: Log-loss,
ℓ∞-norm, κ = 1, ϵ = 0.1

Dataset
Data Statistics Wall-clock Time (s)

Ratio
Sample Feature YALMIP GS-ADMM 2

a1a 1605 123 47.98 3.12 15
a2a 2265 123 67.08 3.78 18
a3a 3185 123 112.64 4.82 23
a4a 4781 123 222.78 4.91 45
a5a 6414 123 449.76 4.63 91
a6a 11220 123 1282.32 7.27 176
a7a 16100 123 2509.61 8.11 309
a8a 22696 123 4887.58 8.52 574
a9a 32561 123 10835.75 9.31 1164

2GS-ADMM denotes the proposed first-order algorithmic framework.
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Efficiency of iLP-ADMM for β-subproblem

● Consider a representative model3— log-loss with q =∞,

min
β

1

N

N

∑
i=1
(log(1 + exp(−βT ẑi) +

1

2
(βT ẑi − λκ)) +

1

2N
∥Zβ − λκeN∥1

s.t. ∥β∥∞ ≤ λ.

● Baseline methods:

● Two-block Standard ADMM (cf. SADMM): For both β- and
µ-updates, we used the accelerated projected gradient descent
and semi-smooth Newton method respectively.

● Primal-Dual Hybrid Gradient (cf. PDHG);

● Linearized-ADMM (cf. LADMM): compared with

iLP-ADMM, we add the term
Lf

4
∥µ − µk∥2 for the µ-update.

● Projected Subgradient Method (cf. Subgradient);

3eN denotes the all-ones vector in RN .
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Efficiency of iLP-ADMM for β-subproblem
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Figure 2: Synthetic Data — (N,n) = (500,100)

F (β) = 1
N

N

∑
i=1
(log(1 + exp(−βT ẑi) + 1

2
(βT ẑi − λκ)) + 1

2N
∥Zβ − λκeN∥1.
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Efficiency of iLP-ADMM for β-subproblem
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Figure 3: Synthetic Data — (N,n) = (10000,500)
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Efficiency of iLP-ADMM for β-subproblem
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Figure 4: UCI Adult Dataset — a2a
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Conclusion and Future Directions

Summary

● Propose an exceptionally efficient first-order algorithmic
framework for solving Wasserstein DRO problems with a linear
hypothesis space;

● Produce new computational tools into the DRO community;

Future Diection

Develop provable and efficient algorithms to tackle the
distributionally robust formulation of deep neural network?
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Thank you! Questions?
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