Towards a First-Order Algorithmic Framework for Wasserstein Distributionally Robust Optimization

Jiajin Li¹²

¹The Chinese University of Hong Kong (CUHK)

²Stanford University

[Joint work with Caihua Chen, Anthony Man-Cho So, Sen Huang]

INFORMS 2021 Annual Meeting

Outline

Introduction and Motivation

Tractable Conic Reformulation

ADMM-based First-Order Algorithmic Framework

Conclusion and Future Directions

Jiajin Li (CUHK/Stanford)

INFORMS 2021 Annual Meeting

Empirical Risk Minimization

• Training dataset: i.i.d. input-output pairs $\{(\hat{x}_i, \hat{y}_i)\}_{i=1}^N$ drawn from the distribution \mathbb{P} ;

Empirical Risk Minimization

- Training dataset: i.i.d. input-output pairs {(x̂_i, ŷ_i)}^N_{i=1} drawn from the distribution P;

$$\inf_{\beta} \left\{ \mathbb{E}_{(x,y)\sim\hat{\mathbb{P}}_N} \left[\ell(f_{\beta}(x), y) \right] = \frac{1}{N} \sum_{i=1}^N \ell(f_{\beta}(\hat{x}_i), \hat{y}_i) \right\},\$$

where

$$\hat{\mathbb{P}}_N \coloneqq \frac{1}{N} \sum_{i=1}^N \delta_{(\hat{x}_i, \hat{y}_i)}$$

is the empirical distribution associated with the training dataset.

Jiajin Li (CUHK/Stanford)

• Logistic regression (LR) — classification problem

• Logistic regression (LR) — classification problem

• input-output data: $x \in \mathbb{R}^n, y \in \{-1, +1\};$

- Logistic regression (LR) classification problem
 - input-output data: $x \in \mathbb{R}^n, y \in \{-1, +1\};$
 - family of linear functions: $x \to f_{\beta}(x) \coloneqq \beta^T x$;

- Logistic regression (LR) classification problem
 - input-output data: $x \in \mathbb{R}^n, y \in \{-1, +1\};$
 - family of linear functions: $x \to f_{\beta}(x) \coloneqq \beta^T x$;
 - log-loss: $\ell(\mu, \nu) = \log(1 + \exp(-\mu\nu));$

- Logistic regression (LR) classification problem
 - input-output data: $x \in \mathbb{R}^n, y \in \{-1, +1\};$
 - family of linear functions: $x \to f_{\beta}(x) \coloneqq \beta^T x$;
 - log-loss: $\ell(\mu, \nu) = \log(1 + \exp(-\mu\nu));$
 - ERM problem:

$$\inf_{\beta} \frac{1}{N} \sum_{i=1}^{N} \log(1 + \exp(-\hat{y}_i \beta^T \hat{x}_i));$$

• A well-known issue with ERM is overfitting.

- A well-known issue with ERM is overfitting.
 - estimator β^* works well on training dataset but generalizes poorly $\rightarrow \mathbb{E}_{(x,y)\sim\hat{\mathbb{P}}_N}[\ell(f_{\beta^*}(x), y)]$ and $\mathbb{E}_{(x,y)\sim\mathbb{P}}[\ell(f_{\beta^*}(x), y)]$ are far apart.

- A well-known issue with ERM is overfitting.
 - estimator β^* works well on training dataset but generalizes poorly $\rightarrow \mathbb{E}_{(x,y)\sim\hat{\mathbb{P}}_N}[\ell(f_{\beta^*}(x), y)]$ and $\mathbb{E}_{(x,y)\sim\mathbb{P}}[\ell(f_{\beta^*}(x), y)]$ are far apart.
- A standard approach to deal with this is regularization:

$$\inf_{\beta} \left\{ \mathbb{E}_{(x,y) \sim \hat{\mathbb{P}}_N} \left[\ell(f_{\beta}(x), y) \right] + \epsilon R(f_{\beta}) \right\}.$$

- A well-known issue with ERM is overfitting.
 - estimator β^* works well on training dataset but generalizes poorly $\rightarrow \mathbb{E}_{(x,y)\sim\hat{\mathbb{P}}_N}[\ell(f_{\beta^*}(x),y)]$ and $\mathbb{E}_{(x,y)\sim\mathbb{P}}[\ell(f_{\beta^*}(x),y)]$ are far apart.
- A standard approach to deal with this is regularization:

$$\inf_{\beta} \left\{ \mathbb{E}_{(x,y) \sim \hat{\mathbb{P}}_N} [\ell(f_{\beta}(x), y)] + \epsilon R(f_{\beta}) \right\}.$$

hard to choose the hyperparameter ε;

- A well-known issue with ERM is overfitting.
 - estimator β^* works well on training dataset but generalizes poorly $\rightarrow \mathbb{E}_{(x,y)\sim\hat{\mathbb{P}}_N}[\ell(f_{\beta^*}(x), y)]$ and $\mathbb{E}_{(x,y)\sim\mathbb{P}}[\ell(f_{\beta^*}(x), y)]$ are far apart.
- A standard approach to deal with this is regularization:

$$\inf_{\beta} \left\{ \mathbb{E}_{(x,y) \sim \hat{\mathbb{P}}_N} \left[\ell(f_{\beta}(x), y) \right] + \epsilon R(f_{\beta}) \right\}.$$

- hard to choose the hyperparameter ε;
- justification often relies on additional assumptions [Kakade et al., 2009].

- A well-known issue with ERM is overfitting.
 - estimator β^* works well on training dataset but generalizes poorly $\rightarrow \mathbb{E}_{(x,y)\sim\hat{\mathbb{P}}_N}[\ell(f_{\beta^*}(x), y)]$ and $\mathbb{E}_{(x,y)\sim\mathbb{P}}[\ell(f_{\beta^*}(x), y)]$ are far apart.
- A standard approach to deal with this is regularization:

$$\inf_{\beta} \left\{ \mathbb{E}_{(x,y) \sim \hat{\mathbb{P}}_N} \left[\ell(f_{\beta}(x), y) \right] + \epsilon R(f_{\beta}) \right\}.$$

- hard to choose the hyperparameter ϵ ;
- justification often relies on additional assumptions [Kakade et al., 2009].
- Distributionally robust optimization (DRO) a fresh perspective on regularization [Shafieezadeh-Abadeh et al., 2019, Namkoong and Duchi, 2017, Gao et al., 2017];

Jiajin Li (CUHK/Stanford)

INFORMS 2021 Annual Meeting

Instead of ERM, consider minimizing the worst-case expected loss

$$\inf_{\beta} \sup_{\mathbb{Q} \in B_{\epsilon}(\hat{\mathbb{P}}_{N})} \mathbb{E}_{(x,y) \sim \mathbb{Q}}[\ell(f_{\beta}(x), y)], \qquad (\star)$$

where $B_{\epsilon}(\hat{\mathbb{P}}_N)$, the so-called ambiguity set, is a set of distributions around $\hat{\mathbb{P}}_N$. That is,

$$B_{\epsilon}(\hat{\mathbb{P}}_N) = \{\mathbb{Q}: D(\mathbb{Q}, \hat{\mathbb{P}}_N) \leq \epsilon\},\$$

where $D(\cdot, \cdot)$ is a certain probability discrepancy.

Instead of ERM, consider minimizing the worst-case expected loss

$$\inf_{\beta} \sup_{\mathbb{Q} \in B_{\epsilon}(\hat{\mathbb{P}}_{N})} \mathbb{E}_{(x,y) \sim \mathbb{Q}}[\ell(f_{\beta}(x), y)], \qquad (\star)$$

where $B_{\epsilon}(\hat{\mathbb{P}}_N)$, the so-called **ambiguity set**, is a set of distributions around $\hat{\mathbb{P}}_N$. That is,

$$B_{\epsilon}(\hat{\mathbb{P}}_N) = \{\mathbb{Q} : D(\mathbb{Q}, \hat{\mathbb{P}}_N) \leq \epsilon\},\$$

where $D(\cdot, \cdot)$ is a certain probability discrepancy.

 How to choose the probability metric D(·, ·)? E.g., moment-based/ f-divergence/ Wasserstein distance.

Instead of ERM, consider minimizing the worst-case expected loss

$$\inf_{\beta} \sup_{\mathbb{Q} \in B_{\epsilon}(\hat{\mathbb{P}}_{N})} \mathbb{E}_{(x,y) \sim \mathbb{Q}}[\ell(f_{\beta}(x), y)], \qquad (\star)$$

where $B_{\epsilon}(\hat{\mathbb{P}}_N)$, the so-called **ambiguity set**, is a set of distributions around $\hat{\mathbb{P}}_N$. That is,

$$B_{\epsilon}(\hat{\mathbb{P}}_N) = \{\mathbb{Q} : D(\mathbb{Q}, \hat{\mathbb{P}}_N) \leq \epsilon\},\$$

where $D(\cdot, \cdot)$ is a certain probability discrepancy.

- How to choose the probability metric D(·, ·)? E.g., moment-based/ f-divergence/ Wasserstein distance.
 - asymptotic consistency;

Instead of ERM, consider minimizing the worst-case expected loss

$$\inf_{\beta} \sup_{\mathbb{Q} \in B_{\epsilon}(\hat{\mathbb{P}}_{N})} \mathbb{E}_{(x,y) \sim \mathbb{Q}}[\ell(f_{\beta}(x), y)], \qquad (\star)$$

where $B_{\epsilon}(\hat{\mathbb{P}}_N)$, the so-called **ambiguity set**, is a set of distributions around $\hat{\mathbb{P}}_N$. That is,

$$B_{\epsilon}(\hat{\mathbb{P}}_N) = \{\mathbb{Q} : D(\mathbb{Q}, \hat{\mathbb{P}}_N) \leq \epsilon\},\$$

where $D(\cdot, \cdot)$ is a certain probability discrepancy.

- How to choose the probability metric D(·, ·)? E.g., moment-based/ f-divergence/ Wasserstein distance.
 - asymptotic consistency;
 - support of the worst-case distribution Q;

Jiajin Li (CUHK/Stanford)

• Instead of ERM, consider minimizing the worst-case expected loss

$$\inf_{\beta} \sup_{\mathbb{Q} \in B_{\epsilon}(\hat{\mathbb{P}}_{N})} \mathbb{E}_{(x,y) \sim \mathbb{Q}}[\ell(f_{\beta}(x), y)], \qquad (\star)$$

where $B_{\epsilon}(\hat{\mathbb{P}}_N)$, the so-called **ambiguity set**, is a set of distributions around $\hat{\mathbb{P}}_N$. That is,

$$B_{\epsilon}(\hat{\mathbb{P}}_N) = \{\mathbb{Q} : D(\mathbb{Q}, \hat{\mathbb{P}}_N) \leq \epsilon\},\$$

where $D(\cdot, \cdot)$ is a certain probability discrepancy.

- How to choose the probability metric D(·, ·)? E.g., moment-based/ f-divergence/ Wasserstein distance.
 - asymptotic consistency;
 - support of the worst-case distribution Q;
 - tractability;

Jiajin Li (CUHK/Stanford)

INFORMS 2021 Annual Meeting

Wasserstein Distance

$$W(\alpha,\beta) \coloneqq \inf_{\pi: z \sim \alpha, z' \sim \beta} \mathbb{E}_{(z,z') \sim \pi}[d(z,z')],$$

where

- z = (x, y) is the input-output pair;
- d(z, z') is the transport cost between z and z';
- π is a joint distribution (z, z').

Specifically, we have

•
$$B_{\epsilon}(\hat{\mathbb{P}}_N) = \{\mathbb{Q} : W(\mathbb{Q}, \hat{\mathbb{P}}_N) \leq \epsilon\}.$$

Wasserstein Distance

$$W(\alpha,\beta) \coloneqq \inf_{\pi: z \sim \alpha, z' \sim \beta} \mathbb{E}_{(z,z') \sim \pi}[d(z,z')],$$

where

- z = (x, y) is the input-output pair;
- d(z, z') is the transport cost between z and z';
- π is a joint distribution (z, z').

Specifically, we have

• $B_{\epsilon}(\hat{\mathbb{P}}_N) = \{\mathbb{Q} : W(\mathbb{Q}, \hat{\mathbb{P}}_N) \leq \epsilon\}.$

Remarks

The worst-case distribution \mathbb{Q} may have different support from $\hat{\mathbb{P}}_N$ and is capable of generating new examples within small perturbation.

INFORMS 2021 Annual Meeting

Connect with Regularization and Adversarial Robustness

Figure 1: Connections among Wasserstein DRO, Generalized Lipschitz Regularization [Cranko et al., 2021], and Adversarial Robustness [Sinha et al., 2018]

Jiajin Li (CUHK/Stanford)

Connect with Regularization and Adversarial Robustness

Figure 1: Connections among Wasserstein DRO, Generalized Lipschitz Regularization [Cranko et al., 2021], and Adversarial Robustness [Sinha et al., 2018]

Wasserstein DRO is a quite powerful modeling tool!

Jiajin Li (CUHK/Stanford)

INFORMS 2021 Annual Meeting

Main Question

Can we address Wasserstein DRO in a tractable way?

Main Question

Can we address Wasserstein DRO in a tractable way?

Outline

Introduction and Motivation

Tractable Conic Reformulation

ADMM-based First-Order Algorithmic Framework

Conclusion and Future Directions

Jiajin Li (CUHK/Stanford)

INFORMS 2021 Annual Meeting

10 / 33

Wasserstein DRO with Linear Hypothesis Space

- Binary classification problem $x \in \mathbb{R}^n$ and $y \in \{+1, -1\}$;
- Generalized linear model, $f_{\beta}(x) = \beta^T x$;
- Convex Lipschitz continuous loss, e.g., log-loss, hinge loss, smooth hinge loss;
- $d((x,y),(x',y')) = ||x x'||_p + \frac{\kappa}{2}|y y'|$ with $\kappa > 0$ and $||\cdot||$ denotes the ℓ_p -norm on \mathbb{R}^n where $p = \{1,2,+\infty\};$
- The parameter κ can be viewed as the reliability of the labels.

Wasserstein DRO with Linear Hypothesis Space

- Binary classification problem $x \in \mathbb{R}^n$ and $y \in \{+1, -1\}$;
- Generalized linear model, $f_{\beta}(x) = \beta^T x$;
- Convex Lipschitz continuous loss, e.g., log-loss, hinge loss, smooth hinge loss;
- $d((x,y),(x',y')) = ||x x'||_p + \frac{\kappa}{2}|y y'|$ with $\kappa > 0$ and $||\cdot||$ denotes the ℓ_p -norm on \mathbb{R}^n where $p = \{1,2,+\infty\}$;
- The parameter κ can be viewed as the reliability of the labels.

Wasserstein DRO (*) admits a tractable conic reformulation!

Tractable Convex Reformulation

Theorem

(cf. Theorem 14 (ii) in [Shafieezadeh-Abadeh et al., 2019]) If $f_{\beta}(x) = \beta^T x$ and $\ell(\cdot, \cdot)$ is Lipschitz continuous, Problem (*) is equivalent to

$$\inf_{\lambda,\beta,s} \quad \lambda \epsilon + \frac{1}{N} \sum_{i=1}^{N} s_i$$
s.t. $\ell(\beta^T \hat{x}_i, \hat{y}_i) \le s_i, \ i \in [N],$ (Δ)
 $\ell(\beta^T \hat{x}_i, -\hat{y}_i) - \lambda \kappa \le s_i, \ i \in [N],$
 $Lip(\ell) \|\beta\|_q \le \lambda.$

Here, $\frac{1}{p} + \frac{1}{q} = 1$ for $p \in \{1, 2, +\infty\}$.

Jiajin Li (CUHK/Stanford)

 Rely on general-purpose solvers (i.e., Gurobi, Mosek, YALMIP) — scalability issue ⁽²⁾;

- Rely on general-purpose solvers (i.e., Gurobi, Mosek, YALMIP) — scalability issue ⁽²⁾;
- Stochastic gradient descent (SGD) type algorithms for DRO problems [Sinha et al., 2018] — strong assumptions ^(C);

- Rely on general-purpose solvers (i.e., Gurobi, Mosek, YALMIP) — scalability issue ⁽²⁾;
- Stochastic gradient descent (SGD) type algorithms for DRO problems [Sinha et al., 2018] — strong assumptions ^(C);

• error free — $\kappa = +\infty$;

- Rely on general-purpose solvers (i.e., Gurobi, Mosek, YALMIP) — scalability issue ⁽²⁾;
- Stochastic gradient descent (SGD) type algorithms for DRO problems [Sinha et al., 2018] — strong assumptions ^(C);

• error free — $\kappa = +\infty$;

smoothness assumption for loss functions;

- Rely on general-purpose solvers (i.e., Gurobi, Mosek, YALMIP) — scalability issue ⁽²⁾;
- Stochastic gradient descent (SGD) type algorithms for DRO problems [Sinha et al., 2018] — strong assumptions ^(C);

• error free — $\kappa = +\infty$;

- smoothness assumption for loss functions;
- strong convexity for the transport cost;

- Rely on general-purpose solvers (i.e., Gurobi, Mosek, YALMIP) — scalability issue ⁽²⁾;
- Stochastic gradient descent (SGD) type algorithms for DRO problems [Sinha et al., 2018] — strong assumptions ^(C);

• error free — $\kappa = +\infty$;

- smoothness assumption for loss functions;
- strong convexity for the transport cost;
Algorithm Design for Wasserstein DRO

- Rely on general-purpose solvers (i.e., Gurobi, Mosek, YALMIP) — scalability issue ⁽²⁾;
- Stochastic gradient descent (SGD) type algorithms for DRO problems [Sinha et al., 2018] — strong assumptions ^(C);

• error free — $\kappa = +\infty$;

- smoothness assumption for loss functions;
- strong convexity for the transport cost;

Our Target

How can we develop **provably efficient** algorithms tailored to a broad class of Wasserstein DRO problems?

The Principle of Algorithm Design

- Close the theoretical and computational gap
 - provable algorithms but slow practical implementations ⁽²⁾;
 - practically fast algorithms without theoretical guarantees (2);

The Principle of Algorithm Design

Close the theoretical and computational gap

- provable algorithms but slow practical implementations ⁽²⁾;
- practically fast algorithms without theoretical guarantees $igodot_{2};$

Guideline for Algorithm Design

The practical efficiency indeed relies on how the algorithm exploits the problem-specific structure.

Outline

Introduction and Motivation

Tractable Conic Reformulation

ADMM-based First-Order Algorithmic Framework

Conclusion and Future Directions

Jiajin Li (CUHK/Stanford)

INFORMS 2021 Annual Meeting

15 / 33

Identify the Key Structures

Reformulate (Δ) as a compact form¹,

$$\min_{\substack{\beta,\lambda \ge 0}} \quad \lambda \epsilon + \frac{1}{N} \sum_{i=1}^{N} \max\left\{ L(\beta^T \hat{z}_i), L(-\beta^T \hat{z}_i) - \lambda \kappa \right\}$$

s.t.
$$\operatorname{Lip}(L) \|\beta\|_q \le \lambda.$$
 (1)

• Training data $\hat{z}_i = \hat{y}_i \cdot \hat{x}_i$;

¹For simplicity, $L(\beta^T \hat{z}_i) = \ell(\hat{y}_i, \beta^T \hat{x}_i)$. Jiajin Li (CUHK/Stanford) INFORMS 2021 Annual Meeting

Identify the Key Structures

Reformulate (Δ) as a compact form¹,

$$\min_{\substack{\beta,\lambda \ge 0}} \quad \lambda \epsilon + \frac{1}{N} \sum_{i=1}^{N} \max\left\{ L(\beta^T \hat{z}_i), L(-\beta^T \hat{z}_i) - \lambda \kappa \right\}$$

s.t.
$$\operatorname{Lip}(L) \|\beta\|_q \le \lambda.$$
 (1)

- Training data $\hat{z}_i = \hat{y}_i \cdot \hat{x}_i$;
- λ : one-dimensional search?

 $\frac{1}{1}$ For simplicity, $L(\beta^T \hat{z}_i) = \ell(\hat{y}_i, \beta^T \hat{x}_i).$ Jiajin Li (CUHK/Stanford) INFORMS 2021 Annual Meeting

Identify the Key Structures

Reformulate (Δ) as a compact form¹,

$$\min_{\substack{\beta,\lambda \ge 0}} \quad \lambda \epsilon + \frac{1}{N} \sum_{i=1}^{N} \max\left\{ L(\beta^T \hat{z}_i), L(-\beta^T \hat{z}_i) - \lambda \kappa \right\}$$

s.t.
$$\operatorname{Lip}(L) \|\beta\|_q \le \lambda.$$
 (1)

- Training data $\hat{z}_i = \hat{y}_i \cdot \hat{x}_i$;
- λ : one-dimensional search?
- β -subproblem: two non-separable non-smooth terms $\textcircled{\ensuremath{\Im}}$;

¹For simplicity, $L(\beta^T \hat{z}_i) = \ell(\hat{y}_i, \beta^T \hat{x}_i)$.

Jiajin Li (CUHK/Stanford)

• Golden section search for λ^{\star} — establish a tight upper bound λ^{U} for the optimal λ^{\star} ;

- Golden section search for λ^{\star} establish a tight upper bound λ^{U} for the optimal λ^{\star} ;
- iLP-ADMM for the resulting β -subproblem

- Golden section search for λ^{\star} establish a tight upper bound λ^{U} for the optimal λ^{\star} ;
- iLP-ADMM for the resulting β -subproblem
 - operator splitting prototypical form

$$\min_{\substack{\beta,\mu}} f(\mu) + g(\mu) + p(\beta)$$

s.t. $Z\beta - \mu = 0$ (2)

- Golden section search for λ^{\star} establish a tight upper bound λ^{U} for the optimal λ^{\star} ;
- iLP-ADMM for the resulting β -subproblem
 - operator splitting prototypical form

$$\min_{\substack{\beta,\mu}\\ \text{s.t.}} f(\mu) + g(\mu) + p(\beta)$$
s.t. $Z\beta - \mu = 0$
(2)

• $f(\cdot)$: convex and gradient Lipschitz continuous $L_f > 0$;

- Golden section search for λ^{\star} establish a tight upper bound λ^{U} for the optimal λ^{\star} ;
- iLP-ADMM for the resulting β -subproblem
 - operator splitting prototypical form

$$\min_{\substack{\beta,\mu}\\ \text{s.t.}} f(\mu) + g(\mu) + p(\beta)$$
s.t. $Z\beta - \mu = 0$
(2)

- $f(\cdot)$: convex and gradient Lipschitz continuous $L_f > 0$;
- $g(\cdot)$: convex and non-differentiable with the separable structure and closed-form proximal mapping;

- Golden section search for λ^{\star} establish a tight upper bound λ^{U} for the optimal λ^{\star} ;
- iLP-ADMM for the resulting β -subproblem
 - operator splitting prototypical form

$$\min_{\substack{\beta,\mu\\}} f(\mu) + g(\mu) + p(\beta)$$

s.t. $Z\beta - \mu = 0$ (2)

- $f(\cdot)$: convex and gradient Lipschitz continuous $L_f > 0$;
- $g(\cdot)$: convex and non-differentiable with the separable structure and closed-form proximal mapping;

•
$$p(\cdot) = \mathbb{I}_{\{\|\cdot\|_q \leq \lambda\}};$$

Wasserstein DRO with Linear Hypothesis Space

Table 1: Three Representative Learning Models

Loss function $L(z)$	$f(\mu)$	$g_i(\mu_i)$	
$\log(1 + \exp(-z))$	$\frac{1}{N}\sum_{i=1}^{N}(L(\mu_i)+\frac{1}{2}(\mu_i-\lambda\kappa))$	$\frac{1}{2} z_i - \lambda \kappa $	
$\max\left(1-z,0\right)$	0	$\max\left(1-\mu_i,1+\mu_i-\lambda\kappa,0\right)$	
$\begin{cases} \frac{1}{2} - z & z \le 0\\ \frac{1}{2}(1 - z)^2 & 0 < z < 1\\ 0 & z \ge 1 \end{cases}$	0	PLQ*	

piecewise linear-quadratic functions;

Log-loss, hinge loss and smooth hinge loss;

•
$$g(\mu) = \frac{1}{N} \sum_{i=1}^{N} g_i(\mu_i);$$

Jiajin Li (CUHK/Stanford)

Theoretical Upper Bound for λ^{\star}

Proposition

Suppose that $(\beta^*, \lambda^*, s^*)$ is an optimal solution to Problem (Δ) . Thus, we have

- 1. If L(z) is log-loss, we have $\lambda^* \leq \lambda^U = \frac{0.2785}{\epsilon}$.
- **2.** If L(z) is smooth hinge loss, we have $\lambda^* \leq \lambda^U = \frac{0.5}{\epsilon}$.

3. If L(z) is hinge loss, we have $\lambda^* \leq \lambda^U = \frac{1}{\epsilon}$.

• $q(\lambda) = \inf_{\beta} \Omega(\lambda, \beta)$ is a unimodal function on \mathbb{R} .

•
$$\Omega(\lambda,\beta) = \lambda \epsilon + \frac{1}{N} \sum_{i=1}^{N} \max \left\{ L(\beta^T \hat{z}_i), L(-\beta^T \hat{z}_i) - \lambda \kappa \right\} + \mathbb{I}_{\left\{ \|\beta\|_q \le \lambda \right\}}.$$

Jiajin Li (CUHK/Stanford)

The augmented Lagrangian function is defined by

$$\mathcal{L}_{\rho}(\beta,\mu;w) = f(\mu) + g(\mu) + p(\beta) - w^{T}(Z\beta - \mu) + \frac{\rho}{2} \|Z\beta - \mu\|^{2},$$

where $w \in \mathbb{R}^N$ is the multipliers and ρ is the penalty parameter.

The augmented Lagrangian function is defined by

$$\mathcal{L}_{\rho}(\beta,\mu;w) = f(\mu) + g(\mu) + p(\beta) - w^{T}(Z\beta - \mu) + \frac{\rho}{2} \|Z\beta - \mu\|^{2},$$

where $w \in \mathbb{R}^N$ is the multipliers and ρ is the penalty parameter.

• Ad-hoc linearized technique for μ -update

$$\mu^{k+1} = \arg\min_{\mu} \left\{ \nabla f(\mu^{k})^{T} \mu + g(\mu) - \langle w^{k}, Z\beta^{k+1} - \mu \rangle + \frac{\rho}{2} \|\mu - Z\beta^{k+1}\|^{2} \right\};$$

The augmented Lagrangian function is defined by

$$\mathcal{L}_{\rho}(\beta,\mu;w) = f(\mu) + g(\mu) + p(\beta) - w^{T}(Z\beta - \mu) + \frac{\rho}{2} \|Z\beta - \mu\|^{2},$$

where $w \in \mathbb{R}^N$ is the multipliers and ρ is the penalty parameter.

• Ad-hoc linearized technique for μ -update

$$\mu^{k+1} = \arg\min_{\mu} \left\{ \nabla f(\mu^{k})^{T} \mu + g(\mu) - \langle w^{k}, Z\beta^{k+1} - \mu \rangle + \frac{\rho}{2} \|\mu - Z\beta^{k+1}\|^{2} \right\};$$

• closed-form proximal mapping for $g(\mu)$;

Jiajin Li (CUHK/Stanford)

The augmented Lagrangian function is defined by

$$\mathcal{L}_{\rho}(\beta,\mu;w) = f(\mu) + g(\mu) + p(\beta) - w^{T}(Z\beta - \mu) + \frac{\rho}{2} \|Z\beta - \mu\|^{2},$$

where $w \in \mathbb{R}^N$ is the multipliers and ρ is the penalty parameter.

• Ad-hoc linearized technique for μ -update

$$\mu^{k+1} = \arg\min_{\mu} \left\{ \nabla f(\mu^{k})^{T} \mu + g(\mu) - \langle w^{k}, Z\beta^{k+1} - \mu \rangle + \frac{\rho}{2} \|\mu - Z\beta^{k+1}\|^{2} \right\};$$

- closed-form proximal mapping for $g(\mu)$;
- exempt from the step size selection procedure;

The augmented Lagrangian function is defined by

$$\mathcal{L}_{\rho}(\beta,\mu;w) = f(\mu) + g(\mu) + p(\beta) - w^{T}(Z\beta - \mu) + \frac{\rho}{2} \|Z\beta - \mu\|^{2},$$

where $w \in \mathbb{R}^N$ is the multipliers and ρ is the penalty parameter.

• Ad-hoc linearized technique for μ -update

$$\mu^{k+1} = \arg\min_{\mu} \left\{ \nabla f(\mu^{k})^{T} \mu + g(\mu) - \langle w^{k}, Z\beta^{k+1} - \mu \rangle + \frac{\rho}{2} \|\mu - Z\beta^{k+1}\|^{2} \right\};$$

• closed-form proximal mapping for $g(\mu)$;

• exempt from the step size selection procedure;

Dynamically adjusting the penalty parameter

The augmented Lagrangian function is defined by

$$\mathcal{L}_{\rho}(\beta,\mu;w) = f(\mu) + g(\mu) + p(\beta) - w^{T}(Z\beta - \mu) + \frac{\rho}{2} \|Z\beta - \mu\|^{2},$$

where $w \in \mathbb{R}^N$ is the multipliers and ρ is the penalty parameter.

• Ad-hoc linearized technique for μ -update

$$\mu^{k+1} = \arg\min_{\mu} \left\{ \nabla f(\mu^{k})^{T} \mu + g(\mu) - \langle w^{k}, Z\beta^{k+1} - \mu \rangle + \frac{\rho}{2} \|\mu - Z\beta^{k+1}\|^{2} \right\};$$

• closed-form proximal mapping for $g(\mu)$;

exempt from the step size selection procedure;

Dynamically adjusting the penalty parameter

• $\rho_{k+1} \ge \rho_k$, e.g., geometrically increasing the penalty parameter;

Jiajin Li (CUHK/Stanford)

• Solving the β -subproblem in an inexact way

$$\beta^{k+1} \approx \operatorname*{arg\,min}_{\beta \in \mathbb{R}^n} \left\{ \mathcal{L}_{\rho_{k+1}}(\beta, \mu^k; w^k) + \frac{1}{2} \|\beta - \beta^k\|_S^2 \right\};$$

• Solving the β -subproblem in an inexact way

$$\beta^{k+1} \approx \operatorname*{arg\,min}_{\beta \in \mathbb{R}^n} \left\{ \mathcal{L}_{\rho_{k+1}}(\beta, \mu^k; w^k) + \frac{1}{2} \|\beta - \beta^k\|_S^2 \right\};$$

- select a positive semidefinite matrix S such that $\left[S;Z\right]$ has full column rank;

• Solving the β -subproblem in an inexact way

$$\beta^{k+1} \approx \operatorname*{arg\,min}_{\beta \in \mathbb{R}^n} \left\{ \mathcal{L}_{\rho_{k+1}}(\beta, \mu^k; w^k) + \frac{1}{2} \|\beta - \beta^k\|_S^2 \right\};$$

- select a positive semidefinite matrix S such that [S;Z] has full column rank;
- convex quadratic problem with an l_q-ball constraint accelerated projected gradient descent;

• Solving the β -subproblem in an inexact way

$$\beta^{k+1} \approx \operatorname*{arg\,min}_{\beta \in \mathbb{R}^n} \left\{ \mathcal{L}_{\rho_{k+1}}(\beta, \mu^k; w^k) + \frac{1}{2} \|\beta - \beta^k\|_S^2 \right\};$$

- select a positive semidefinite matrix S such that [S; Z] has full column rank;
- convex quadratic problem with an l_q-ball constraint accelerated projected gradient descent;
- the error condition $\|d^{k+1}\| \leq \xi^{k+1}$,

$$d^{k+1} \in \partial_{\beta} \mathcal{L}_{\rho_{k+1}}(\beta^{k+1}, \mu^{k}; w^{k}) + S(\beta^{k+1} - \beta^{k});$$

Convergence Analysis of iLP-ADMM

The residual function we utilized to conduct the analysis,

 $r_{\mathsf{KKT}}(\beta,\mu,w) \coloneqq d^2(0,\nabla f(\mu) + \partial g(\mu) + w) + d^2(0,\partial p(\beta) - Z^Tw) + \|Z\beta - \mu\|^2.$

Theorem (Informal Statement)

If $\sup_{k\geq 1} \rho_k \in (3L_f, +\infty)$ and the error condition $\sum_{k=1}^{\infty} \xi^k < \infty$ holds, we have

- 1. The sequence $\{(\beta^{k+1}, \mu^{k+1}, w^{k+1})\}_{k\geq 0}$ converges to a KKT point of Problem (2).
- **2.** The KKT squared residual $r_{KKT}(\beta^K, \mu^K, w^K)$ converges with rate $o(\frac{1}{K})$, i.e.,

$$\min_{1 \le k \le K} \left\{ r_{\mathsf{KKT}}(\beta^k, \mu^k, w^k) \right\} = o\left(\frac{1}{K}\right).$$

Numerical Results

Jiajin Li (CUHK/Stanford)

INFORMS 2021 Annual Meeting

23 / 33

Wall-clock Time Comparison with the YALMIP

Table 2: Wall-clock Time Comparison on UCI Adult Datasets: Log-loss, $\ell_\infty\text{-norm},\ \kappa$ = $1,\epsilon$ = 0.1

Dataset	Data Statistics		Wall-clock Time (s)		Datia
	Sample	Feature	YALMIP	GS-ADMM ²	Ratio
ala	1605	123	47.98	3.12	15
a2a	2265	123	67.08	3.78	18
a3a	3185	123	112.64	4.82	23
a4a	4781	123	222.78	4.91	45
a5a	6414	123	449.76	4.63	91
аба	11220	123	1282.32	7.27	176
a7a	16100	123	2509.61	8.11	309
a8a	22696	123	4887.58	8.52	574
a9a	32561	123	10835.75	9.31	1164

²GS-ADMM denotes the proposed first-order algorithmic framework. Jiajin Li (CUHK/Stanford) INFORMS 2021 Annual Meeting

Efficiency of iLP-ADMM for β -subproblem

• Consider a representative model³— log-loss with $q = \infty$,

$$\min_{\beta} \frac{1}{N} \sum_{i=1}^{N} \left(\log(1 + \exp(-\beta^T \hat{z}_i) + \frac{1}{2} (\beta^T \hat{z}_i - \lambda \kappa) \right) + \frac{1}{2N} \|Z\beta - \lambda \kappa e_N\|_1$$

s.t. $\|\beta\|_{\infty} \leq \lambda$.

 ${}^{3}e_{N}$ denotes the all-ones vector in \mathbb{R}^{N} .

Efficiency of iLP-ADMM for β -subproblem

• Consider a representative model³— log-loss with $q = \infty$,

$$\min_{\beta} \frac{1}{N} \sum_{i=1}^{N} \left(\log(1 + \exp(-\beta^T \hat{z}_i) + \frac{1}{2} (\beta^T \hat{z}_i - \lambda \kappa) \right) + \frac{1}{2N} \|Z\beta - \lambda \kappa e_N\|_1$$

s.t. $\|\beta\|_{\infty} \leq \lambda$.

- Baseline methods:
 - Two-block Standard ADMM (cf. SADMM): For both β- and μ-updates, we used the accelerated projected gradient descent and semi-smooth Newton method respectively.
 - Primal-Dual Hybrid Gradient (cf. **PDHG**);
 - Linearized-ADMM (cf. **LADMM**): compared with iLP-ADMM, we add the term $\frac{L_f}{4} \|\mu \mu^k\|^2$ for the μ -update.
 - Projected Subgradient Method (cf. Subgradient);

Jiajin Li (CUHK/Stanford)

 $^{{}^{3}}e_{N}$ denotes the all-ones vector in \mathbb{R}^{N} .

Efficiency of iLP-ADMM for β -subproblem

Figure 2: Synthetic Data — (N, n) = (500, 100)

$$F(\beta) = \frac{1}{N} \sum_{i=1}^{N} \left(\log(1 + \exp(-\beta^T \hat{z}_i) + \frac{1}{2} (\beta^T \hat{z}_i - \lambda \kappa)) + \frac{1}{2N} \| Z\beta - \lambda \kappa e_N \|_{1} \right)$$

Jiajin Li (CUHK/Stanford)

INFORMS 2021 Annual Meeting

26 / 33

Efficiency of iLP-ADMM for β -subproblem

Jiajin Li (CUHK/Stanford)

Efficiency of iLP-ADMM for β -subproblem

Figure 4: UCI Adult Dataset — a2a

Outline

Introduction and Motivation

Tractable Conic Reformulation

ADMM-based First-Order Algorithmic Framework

Conclusion and Future Directions

Jiajin Li (CUHK/Stanford)

Conclusion and Future Directions

Summary

 Propose an exceptionally efficient first-order algorithmic framework for solving Wasserstein DRO problems with a linear hypothesis space;

Future Diection

Develop **provable** and **efficient** algorithms to tackle the distributionally robust formulation of deep neural network?

Jiajin Li (CUHK/Stanford)

Conclusion and Future Directions

Summary

 Propose an exceptionally efficient first-order algorithmic framework for solving Wasserstein DRO problems with a linear hypothesis space;

Produce new computational tools into the DRO community;

Future Diection

Develop **provable** and **efficient** algorithms to tackle the distributionally robust formulation of deep neural network?
Reference

Jiajin Li, Caihua Chen, Anthony Man-Cho So, and Sen Huang. "Towards a First-Order Algorithmic Framework for Wasserstein Distributionally Robust Risk Minimization." In Preparation.

The short version has been accepted in NeurIPS 2019.

Thank you! Questions?

References I

Zac Cranko, Zhan Shi, Xinhua Zhang, Richard Nock, and Simon Kornblith. Generalised lipschitz regularisation equals distributional robustness. In *International Conference on Machine Learning*, pages 2178–2188. PMLR, 2021.

- Rui Gao, Xi Chen, and Anton J Kleywegt. Wasserstein Distributional Robustness and Regularization in Statistical Learning. *arXiv preprint arXiv:1712.06050*, 2017.
- Sham M Kakade, Karthik Sridharan, and Ambuj Tewari. On the complexity of linear prediction: Risk bounds, margin bounds, and regularization. In Advances in neural information processing systems, pages 793–800, 2009.
- Hongseok Namkoong and John C Duchi. Variance-based Regularization with Convex Objectives. In *Advances in Neural Information Processing Systems*, pages 2971–2980, 2017.

References II

Soroosh Shafieezadeh-Abadeh, Daniel Kuhn, and Peyman Mohajerin Esfahani. Regularization via mass transportation. *Journal of Machine Learning Research*, 20(103): 1–68, 2019.

Aman Sinha, Hongseok Namkoong, and John Duchi. Certifying some distributional robustness with principled adversarial training. In *International Conference on Learning Representations*, 2018.