COMM 616: Modern Optimization with Applications in ML and OR 2024-25 Fall Lecture 2: Element of Convex Analysis I Instructor: Jiajin Li September 3rd, 2024

First and foremost, the concept of convexity plays a crucial role in both the theoretical and algorithmic aspects of optimization.

1 Why Convexity is Special?

- (i) They exhibit favorable geometric properties, such as the fact that any local minimum is also a global minimum.
- (ii) There are excellent software tools (e.g., CVX, Mosek, Gurobi) that can efficiently solve a wide range of convex problems.
- (iii) Although many machine learning tasks are still nonconvex, modern nonconvex theories and algorithm designs continue to heavily rely on fundamental convex analysis techniques.

Theorem 1 (Local Implies Global). Consider an optimization problem

$$\min_{\boldsymbol{x}\in\mathcal{S}}f(\boldsymbol{x}),$$

where $f: S \to \mathbb{R}$ is a convex function and S is a convex set. Then, any local minima is also a global minima.

Proof. Let $\bar{\boldsymbol{x}}$ be a local minima. By its definition (see Definition 5 in Lecture 1), we have: There exists $\epsilon > 0$ such that $f(\bar{\boldsymbol{x}}) \leq f(\boldsymbol{x})$, for all $\boldsymbol{x} \in \mathcal{B}(\bar{\boldsymbol{x}}, \epsilon)$. Suppose for the sake of contradiction, there exists a point $\boldsymbol{z} \in \mathcal{S}$ with

$$f(\boldsymbol{z}) < f(\bar{\boldsymbol{x}}).$$

Moreover, due the convexity of the set \mathcal{S} , we have

$$\alpha \bar{\boldsymbol{x}} + (1 - \alpha) \boldsymbol{z} \in \mathcal{S}, \forall \alpha \in [0, 1].$$

By the convexity of f, we have

$$f(\alpha \bar{\boldsymbol{x}} + (1 - \alpha)\boldsymbol{z}) \le \alpha f(\bar{\boldsymbol{x}}) + (1 - \alpha)f(\boldsymbol{z}) < \alpha f(\bar{\boldsymbol{x}}) + (1 - \alpha)f(\bar{\boldsymbol{x}}) = f(\bar{\boldsymbol{x}}).$$
(1)

However, as $\alpha \to 1$, we have $\alpha \bar{x} + (1 - \alpha)z \to \bar{x}$ and the inequality (1) contradicts the fact that \bar{x} is a local minima.

2 Convex Sets

Definition 2. Let $S \subseteq \mathbb{R}^d$. We say that S is convex if $\alpha x + (1 - \alpha)y \in S$ whenever $x, y \in S$ and $\alpha \in [0, 1]$.

Proposition 3. Let $S \subseteq \mathbb{R}^d$ be non-empty. Then, the following are equivalent:

- (i) S is convex.
- (ii) Any convex combination of points in S belongs to S.

Observation 4. A set S is convex if for any x and y in S, the x - y line entirely in the set S.

Example 5 (Some Examples of Convex Sets). (i) Non-Negative Orthant: $\mathbb{R}^d_+ = \{ x \in \mathbb{R}^d : x \ge 0 \}$.

- (ii) Hyperplane: $H(\boldsymbol{s}, c) = \{ \boldsymbol{x} \in \mathbb{R}^d : \boldsymbol{s}^T \boldsymbol{x} = c \}.$
- (iii) Halfspaces: $H^{-}(\boldsymbol{s}, c) = \left\{ \boldsymbol{x} \in \mathbb{R}^{d} : \boldsymbol{s}^{T} \boldsymbol{x} \leq c \right\}, H^{+}(\boldsymbol{s}, c) = \left\{ \boldsymbol{x} \in \mathbb{R}^{d} : \boldsymbol{s}^{T} \boldsymbol{x} \geq c \right\}.$
- (iv) Euclidean Ball: $\mathcal{B}(\bar{x}, r) = \{ x \in \mathbb{R}^d : ||x \bar{x}||_2 \leq r \}.$ **Proof Idea** By Definition 2 and apply the triangle inequality.
- (v) Ellipsoid: $\mathcal{E}(\bar{\boldsymbol{x}}, \mathbf{Q}) = \{ \boldsymbol{x} \in \mathbb{R}^d : (\boldsymbol{x} \bar{\boldsymbol{x}})^T \mathbf{Q} (\boldsymbol{x} \bar{\boldsymbol{x}}) \leq 1 \}$, where \mathbf{Q} is an $d \times d$ symmetric, positive definite matrix (i.e., $\boldsymbol{x}^T \mathbf{Q} \boldsymbol{x} > 0$ for all $\boldsymbol{x} \in \mathbb{R}^d \setminus \{\mathbf{0}\}$ and denoted by $\mathbf{Q} \in \mathcal{S}_{++}^d$).

Proof Idea proving that $\|x\|_{\mathbf{Q}} = \sqrt{x^T \mathbf{Q} x}$ is a norm and repeat above.

- (vi) Simplex: $\Delta = \left\{ \sum_{i=0}^{d} \alpha_i x_i : \sum_{i=0}^{d} \alpha_i = 1, \alpha_i \ge 0 \text{ for } i = 0, 1, \dots, n \right\}, \text{ where } x_0, x_1, \dots, x_d \text{ are vectors } in \mathbb{R}^d \text{ such that the vectors } x_1 x_0, x_2 x_0, \dots, x_d x_0 \text{ are linearly independent.} \right\}$
- (vii) Convex Cone: A set $\mathcal{K} \subseteq \mathbb{R}^d$ is called a cone if $\{\alpha x : \alpha > 0\} \subseteq \mathcal{K}$ whenever $x \in \mathcal{K}$. If \mathcal{K} is also convex, then \mathcal{K} is called a convex cone.
- (viii) Positive Semidefinite Cone: $S^d_+ = \{ \mathbf{Q} \in S^d : \mathbf{x}^T \mathbf{Q} \mathbf{x} \ge 0 \text{ for all } \mathbf{x} \in \mathbb{R}^d \}.$

2.1 Convexity-preserving Operations

Establishing the convexity of a set directly from its definition can sometimes be challenging. Here, we will study certain operations such that if S is convex, then applying an operator A ensures that A(S) is also convex.

(i) Intersection of two convex sets if convex. That is, if S_1 and S_2 are convex, then $S_1 \cap S_2$ is also convex.

Remark 6. This is also true for infinite/finite intersections or Minkowski sums. However, the union of two convex sets is not necessarily convex.

(ii) Convexity is preserved under affine mappings.

Definition 7 (Affine Functions). We say that a map $A : \mathbb{R}^n \to \mathbb{R}^m$ is affine if

$$A\left(\alpha \boldsymbol{x}_{1}+(1-\alpha)\boldsymbol{x}_{2}\right)=\alpha A\left(\boldsymbol{x}_{1}\right)+(1-\alpha)A\left(\boldsymbol{x}_{2}\right)$$

for all $\boldsymbol{x}_1, \boldsymbol{x}_2 \in \mathbb{R}^d$ and $\alpha \in \mathbb{R}$. It can be shown that A is affine iff there exist $A_0 \in \mathbb{R}^{m \times d}$ and $\boldsymbol{y}_0 \in \mathbb{R}^m$ such that $A(x) = A_0 \boldsymbol{x} + \boldsymbol{y}_0$ for all $\boldsymbol{x} \in \mathbb{R}^d$.

Proposition 8. Let $A : \mathbb{R}^d \to \mathbb{R}^m$ be an affine mapping and $S \subseteq \mathbb{R}^d$ be a convex set. Then, the image $A(S) = \{A(\mathbf{x}) \in \mathbb{R}^d : \mathbf{x} \in S\}$ is convex. Conversely, if $\mathcal{T} \subseteq \mathbb{R}^m$ is a convex set, then the inverse image $A^{-1}(\mathcal{T}) = \{\mathbf{x} \in \mathbb{R}^d : A(\mathbf{x}) \in \mathcal{T}\}$ is convex.

Let us use Proposition 8 to revisit the convexity of Ellipsoid.

Proof. Consider the ball $\mathcal{B}(\mathbf{0}, r) = \{ \mathbf{x} \in \mathbb{R}^d : \mathbf{x}^T \mathbf{x} \leq r^2 \} \subseteq \mathbb{R}^d$, where r > 0. Clearly, $\mathcal{B}(\mathbf{0}, r)$ is convex. Now, let \mathbf{Q} be a $d \times d$ symmetric positive definite matrix. Then, it is well-known that \mathbf{Q} is invertible and the $d \times d$ symmetric matrix \mathbf{Q}^{-1} is also positive definite. Moreover, there exists a $d \times d$ symmetric matrix $\mathbf{Q}^{-1/2}$ such that $\mathbf{Q}^{-1} = \mathbf{Q}^{-1/2}\mathbf{Q}^{-1/2}$. Thus, we may define an affine mapping $A : \mathbb{R}^d \to \mathbb{R}^d$ by $A(\mathbf{x}) = \mathbf{Q}^{-1/2}\mathbf{x} + \bar{\mathbf{x}}$. We claim that

$$A(\mathcal{B}(\mathbf{0},r)) = \left\{ \boldsymbol{x} \in \mathbb{R}^d : (\boldsymbol{x} - \bar{\boldsymbol{x}})^T \mathbf{Q} (\boldsymbol{x} - \bar{\boldsymbol{x}}) \le r^2 \right\} = \mathcal{E}(\bar{\boldsymbol{x}}, \mathbf{Q}/r^2).$$

Indeed, let $x \in \mathcal{B}(\mathbf{0}, r)$ and consider the point $A(\mathbf{x})$. We compute

 $(A(\boldsymbol{x}) - \bar{\boldsymbol{x}})^T \mathbf{Q}(A(\boldsymbol{x}) - \bar{\boldsymbol{x}}) = \boldsymbol{x}^T \mathbf{Q}^{-1/2} \mathbf{Q} \mathbf{Q}^{-1/2} \boldsymbol{x} = \boldsymbol{x}^T \boldsymbol{x} \le r^2$

i.e., $A(\mathcal{B}(\mathbf{0},r)) \subseteq \mathcal{E}(\bar{\boldsymbol{x}}, \mathbf{Q}/r^2)$. Conversely, let $\boldsymbol{x} \in \mathcal{E}(\bar{\boldsymbol{x}}, \mathbf{Q}/r^2)$. Consider the point $\boldsymbol{y} = \mathbf{Q}^{1/2}(\boldsymbol{x} - \bar{\boldsymbol{x}}) = A^{-1}(\boldsymbol{x})$. Then, we have $\boldsymbol{y}^T \boldsymbol{y} \leq r^2$, which implies that $\mathcal{E}(\bar{\boldsymbol{x}}, \mathbf{Q}/r^2) \subseteq A(\mathcal{B}(\mathbf{0}, r))$. Hence, we conclude from the above calculation and Proposition 8 that $\mathcal{E}(\bar{\boldsymbol{x}}, \mathbf{Q}/r^2)$ is convex.

(iii) Convexity is preserved by perspective functions. Define the perspective function $P : \mathbb{R}^d \times \mathbb{R}_{++} \to \mathbb{R}^d$ by $P(\boldsymbol{x}, t) = \frac{\boldsymbol{x}}{t}$.

Proposition 9. Let $P : \mathbb{R}^d \times \mathbb{R}_{++} \to \mathbb{R}^d$ be the perspective function and $S \subseteq \mathbb{R}^d \times \mathbb{R}_{++}$ be a convex set. Then, the image $P(S) = \{ \mathbf{x}/t \in \mathbb{R}^d : (\mathbf{x},t) \in S \}$ is convex. Conversely, if $\mathcal{T} \subseteq \mathbb{R}^d$ is a convex set, then the inverse image $P^{-1}(\mathcal{T}) = \{ (\mathbf{x},t) \in \mathbb{R}^d \times \mathbb{R}_{++} : \mathbf{x}/t \in \mathcal{T} \}$ is convex.

2.2 Projection onto Closed Convex Sets

The projection operator plays a crucial role in optimization algorithms. Specifically, the efficiency of these algorithms depends in part on the efficient computation of the projection operator.

Theorem 10. Let $S \subseteq \mathbb{R}^d$ be non-empty, closed and convex. Then, for every $x \in \mathbb{R}^d$, there exists a unique $z^* \in S$ that is closest (in the Euclidean norm) to x.

Proof Idea A useful characterization of projection:

$$\operatorname{proj}_{\mathcal{S}}(\boldsymbol{x}) = \operatorname{argmin}_{\boldsymbol{z} \in \mathcal{S}} \|\boldsymbol{x} - \boldsymbol{z}\|_{2}^{2}.$$

We apply the Weierstrass theorem (which states that a continuous function over a compact set attains its minimum and maximum) to prove existence. Moreover, we use the method of contradiction to prove uniqueness.

Theorem 11. Let $S \subseteq \mathbb{R}^d$ be non-empty, closed and convex. Given any $x \in \mathbb{R}^d$, we have $z^* = \operatorname{proj}_{S}(x)$ if and only $z^* \in S$ and

$$(\boldsymbol{z} - \boldsymbol{z}^{\star})^T (\boldsymbol{x} - \boldsymbol{z}^{\star}) \leq 0, \quad \forall \boldsymbol{z} \in \mathcal{S}.$$

Proof. Let $z^* = \operatorname{proj}_{\mathcal{S}}(x)$ and $z \in \mathcal{S}$. Consider points of the form $z(\alpha) = \alpha z + (1 - \alpha)z^*$, where $\alpha \in [0, 1]$. By convexity of the set \mathcal{S} , we have $z(\alpha) \in \mathcal{S}$. Moreover, we have

$$\|\boldsymbol{z}^{\star} - \boldsymbol{x}\|_{2} \leq \|\boldsymbol{z}(\alpha) - \boldsymbol{x}\|_{2}$$

for all $\alpha \in [0, 1]$. On the other hand, note that

$$\begin{aligned} \|\boldsymbol{z}(\alpha) - \boldsymbol{x}\|_{2}^{2} &= \left(\boldsymbol{z}^{\star} + \alpha \left(\boldsymbol{z} - \boldsymbol{z}^{\star}\right) - \boldsymbol{x}\right)^{T} \left(\boldsymbol{z}^{\star} + \alpha \left(\boldsymbol{z} - \boldsymbol{z}^{\star}\right) - \boldsymbol{x}\right) \\ &= \|\boldsymbol{z}^{\star} - \boldsymbol{x}\|_{2}^{2} + 2\alpha \left(\boldsymbol{z} - \boldsymbol{z}^{\star}\right)^{T} \left(\boldsymbol{z}^{\star} - \boldsymbol{x}\right) + \alpha^{2} \|\boldsymbol{z} - \boldsymbol{z}^{\star}\|_{2}^{2}. \end{aligned}$$

Thus, we see that $\|\boldsymbol{z}(\alpha) - \boldsymbol{x}\|_2^2 \ge \|\boldsymbol{z}^* - \boldsymbol{x}\|_2^2$ for all $\alpha \in [0, 1]$ if and only if $(\boldsymbol{z} - \boldsymbol{z}^*)^T (\boldsymbol{z}^* - \boldsymbol{x}) \ge 0$. This is precisely the stated condition.

Conversely, suppose that for some $\mathbf{z}' \in \mathcal{S}$, we have $(\mathbf{z} - \mathbf{z}')^T (\mathbf{x} - \mathbf{z}') \leq 0$ for all $\mathbf{z} \in \mathcal{S}$. Upon setting $\mathbf{z} = \operatorname{proj}_{\mathcal{S}}(\mathbf{x})$, we have

$$\left(\operatorname{proj}_{\mathcal{S}}(\boldsymbol{x}) - \boldsymbol{z}'\right)^{T} (\boldsymbol{x} - \boldsymbol{z}') \leq 0.$$
 (2)

On the other hand, by our argument in the preceding paragraph, the point $\operatorname{proj}_{\mathcal{S}}(x)$ satisfies

$$\left(\boldsymbol{z}' - \operatorname{proj}_{\mathcal{S}}(\boldsymbol{x})\right)^{T} \left(\boldsymbol{x} - \operatorname{proj}_{\mathcal{S}}(\boldsymbol{x})\right) \leq 0.$$
(3)

Upon adding (2) and (3), we obtain

$$(\operatorname{proj}_{\mathcal{S}}(\boldsymbol{x}) - \boldsymbol{z}')^T (\operatorname{proj}_{\mathcal{S}}(\boldsymbol{x}) - \boldsymbol{z}') = \|\operatorname{proj}_{\mathcal{S}}(\boldsymbol{x}) - \boldsymbol{z}'\|_2^2 \le 0$$

which is possible only when $\mathbf{z}' = \operatorname{proj}_{\mathcal{S}}(\mathbf{x})$.

References

This lecture draws extensively from the material available at ENGG 5501 Handout 2 taught by Prof. Anthony Man-Cho So.