
COMM 616: Modern Optimization with Applications in ML and OR 2024-25 Fall

Lecture 2: Element of Convex Analysis I
Instructor: Jiajin Li September 3rd, 2024

First and foremost, the concept of convexity plays a crucial role in both the theoretical and algorithmic
aspects of optimization.

1 Why Convexity is Special?

(i) They exhibit favorable geometric properties, such as the fact that any local minimum is also a global
minimum.

(ii) There are excellent software tools (e.g., CVX, Mosek, Gurobi) that can efficiently solve a wide range
of convex problems.

(iii) Although many machine learning tasks are still nonconvex, modern nonconvex theories and algorithm
designs continue to heavily rely on fundamental convex analysis techniques.

Theorem 1 (Local Implies Global). Consider an optimization problem

min
x∈S

f(x),

where f : S → R is a convex function and S is a convex set. Then, any local minima is also a global minima.

Proof. Let x̄ be a local minima. By its definition (see Definition 5 in Lecture 1), we have: There exists ϵ > 0
such that f(x̄) ≤ f(x), for all x ∈ B(x̄, ϵ). Suppose for the sake of contradiction, there exists a point z ∈ S
with

f(z) < f(x̄).

Moreover, due the convexity of the set S, we have

αx̄+ (1− α)z ∈ S,∀α ∈ [0, 1].

By the convexity of f , we have

f(αx̄+ (1− α)z) ≤ αf(x̄) + (1− α)f(z)

< αf(x̄) + (1− α)f(x̄) = f(x̄). (1)

However, as α → 1, we have αx̄+ (1− α)z → x̄ and the inequality (1) contradicts the fact that x̄ is a local
minima. ■

2 Convex Sets

Definition 2. Let S ⊆ Rd. We say that S is convex if αx+(1−α)y ∈ S whenever x,y ∈ S and α ∈ [0, 1].

Proposition 3. Let S ⊆ Rd be non-empty. Then, the following are equivalent:

(i) S is convex.

(ii) Any convex combination of points in S belongs to S.
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Observation 4. A set S is convex if for any x and y in S, the x− y line entirely in the set S.

Example 5 (Some Examples of Convex Sets). (i) Non-Negative Orthant: Rd
+ =

{
x ∈ Rd : x ≥ 0

}
.

(ii) Hyperplane: H(s, c) =
{
x ∈ Rd : sTx = c

}
.

(iii) Halfspaces: H−(s, c) =
{
x ∈ Rd : sTx ≤ c

}
, H+(s, c) =

{
x ∈ Rd : sTx ≥ c

}
.

(iv) Euclidean Ball: B(x̄, r) =
{
x ∈ Rd : ∥x− x̄∥2 ≤ r

}
.

Proof Idea By Definition 2 and apply the triangle inequality. ■

(v) Ellipsoid: E(x̄,Q) =
{
x ∈ Rd : (x− x̄)TQ(x− x̄) ≤ 1

}
, where Q is an d × d symmetric, positive

definite matrix (i.e., xTQx > 0 for all x ∈ Rd\{0} and denoted by Q ∈ Sd
++ ).

Proof Idea proving that ∥x∥Q =
√
xTQx is a norm and repeat above. ■

(vi) Simplex: ∆ =
{∑d

i=0 αixi :
∑d

i=0 αi = 1, αi ≥ 0 for i = 0, 1, . . . , n}, where x0, x1, . . . , xd are vectors

in Rd such that the vectors x1 − x0, x2 − x0, . . . , xd − x0 are linearly independent.

(vii) Convex Cone: A set K ⊆ Rd is called a cone if {αx : α > 0} ⊆ K whenever x ∈ K. If K is also convex,
then K is called a convex cone.

(viii) Positive Semidefinite Cone: Sd
+ =

{
Q ∈ Sd : xTQx ≥ 0 for all x ∈ Rd

}
.

2.1 Convexity-preserving Operations

Establishing the convexity of a set directly from its definition can sometimes be challenging. Here, we will
study certain operations such that if S is convex, then applying an operator A ensures that A(S) is also
convex.

(i) Intersection of two convex sets if convex. That is, if S1 and S2 are convex, then S1 ∩S2 is also convex.

Remark 6. This is also true for infinite/finite intersections or Minkowski sums. However, the union
of two convex sets is not necessarily convex.

(ii) Convexity is preserved under affine mappings.

Definition 7 (Affine Functions). We say that a map A : Rn → Rm is affine if

A (αx1 + (1− α)x2) = αA (x1) + (1− α)A (x2)

for all x1,x2 ∈ Rd and α ∈ R. It can be shown that A is affine iff there exist A0 ∈ Rm×d and y0 ∈ Rm

such that A(x) = A0x+ y0 for all x ∈ Rd.

Proposition 8. Let A : Rd → Rm be an affine mapping and S ⊆ Rd be a convex set. Then, the image
A(S) =

{
A(x) ∈ Rd : x ∈ S

}
is convex. Conversely, if T ⊆ Rm is a convex set, then the inverse image

A−1(T ) =
{
x ∈ Rd : A(x) ∈ T

}
is convex.

Let us use Proposition 8 to revisit the convexity of Ellipsoid.

Proof. Consider the ball B(0, r) =
{
x ∈ Rd : xTx ≤ r2

}
⊆ Rd, where r > 0. Clearly, B(0, r) is convex.

Now, let Q be a d× d symmetric positive definite matrix. Then, it is well-known that Q is invertible
and the d×d symmetric matrix Q−1 is also positive definite. Moreover, there exists a d×d symmetric
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matrix Q−1/2 such that Q−1 = Q−1/2Q−1/2. Thus, we may define an affine mapping A : Rd → Rd by
A(x) = Q−1/2x+ x̄. We claim that

A(B(0, r)) =
{
x ∈ Rd : (x− x̄)TQ(x− x̄) ≤ r2

}
= E(x̄,Q/r2).

Indeed, let x ∈ B(0, r) and consider the point A(x). We compute

(A(x)− x̄)TQ(A(x)− x̄) = xTQ−1/2QQ−1/2x = xTx ≤ r2

i.e., A(B(0, r)) ⊆ E(x̄,Q/r2). Conversely, let x ∈ E
(
x̄,Q/r2

)
. Consider the point y = Q1/2(x−

x̄) = A−1(x). Then, we have yTy ≤ r2, which implies that E(x̄,Q/r2) ⊆ A(B(0, r)). Hence, we
conclude from the above calculation and Proposition 8 that E(x̄,Q/r2) is convex. ■

(iii) Convexity is preserved by perspective functions. Define the perspective function P : Rd ×R++ → R
d

by P (x, t) = x
t .

Proposition 9. Let P : Rd × R++ → Rd be the perspective function and S ⊆ Rd × R++be a convex
set. Then, the image P (S) =

{
x/t ∈ Rd : (x, t) ∈ S

}
is convex. Conversely, if T ⊆ Rd is a convex set,

then the inverse image P−1(T ) =
{
(x, t) ∈ Rd × R++ : x/t ∈ T

}
is convex.

2.2 Projection onto Closed Convex Sets

The projection operator plays a crucial role in optimization algorithms. Specifically, the efficiency of these
algorithms depends in part on the efficient computation of the projection operator.

Theorem 10. Let S ⊆ Rd be non-empty, closed and convex. Then, for every x ∈ Rd, there exists a unique
z⋆ ∈ S that is closest (in the Euclidean norm) to x.

Proof Idea A useful characterization of projection:

projS(x) = argminz∈S ∥x− z∥22.

We apply the Weierstrass theorem (which states that a continuous function over a compact set attains its
minimum and maximum) to prove existence. Moreover, we use the method of contradiction to prove unique-
ness. ■

Theorem 11. Let S ⊆ Rd be non-empty, closed and convex. Given any x ∈ Rd, we have z⋆ = projS(x) if
and only z⋆ ∈ S and

(z − z⋆)T (x− z⋆) ≤ 0, ∀z ∈ S.

Proof. Let z⋆ = projS(x) and z ∈ S. Consider points of the form z(α) = αz + (1− α)z⋆, where α ∈ [0, 1].
By convexity of the set S, we have z(α) ∈ S. Moreover, we have

∥z⋆ − x∥2 ≤ ∥z(α)− x∥2

for all α ∈ [0, 1]. On the other hand, note that

∥z(α)− x∥22 = (z⋆ + α (z − z⋆)− x)
T
(z⋆ + α (z − z⋆)− x)

= ∥z⋆ − x∥22 + 2α (z − z⋆)
T
(z⋆ − x) + α2 ∥z − z⋆∥22

.

Thus, we see that ∥z(α) − x∥22 ≥ ∥z⋆ − x∥22 for all α ∈ [0, 1] if and only if (z − z⋆)
T
(z⋆ − x) ≥ 0. This is

precisely the stated condition.
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Conversely, suppose that for some z′ ∈ S, we have (z − z′)
T
(x− z′) ≤ 0 for all z ∈ S. Upon setting

z = projS(x), we have

(projS(x)− z′)
T
(x− z′) ≤ 0. (2)

On the other hand, by our argument in the preceding paragraph, the point projS(x) satisfies

(z′ − projS(x))
T
(x− projS(x)) ≤ 0. (3)

Upon adding (2) and (3), we obtain

(projS(x)− z′)
T
(projS(x)− z′) = ∥projS(x)− z′∥22 ≤ 0

which is possible only when z′ = projS(x). ■

References

This lecture draws extensively from the material available at ENGG 5501 Handout 2 taught by Prof. Anthony
Man-Cho So.
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