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1 Convex Functions

Definition 1. Let f : Rd → R be an extended real-valued function that is not identically +∞. We say that
f is convex if

f(αx1 + (1− α)x2) ≤ αf(x1) + (1− α)f(x2),

for all x1,x2 ∈ Rd and α ∈ [0, 1].

Proposition 2 (Connection Between Convex Sets and Convex Functions). Let f : Rd → R be an extended
real-valued function that is not identically +∞. Then, f is convex if and only if epi(f) is convex.

Proposition 3 (Jensen’s Inequality). Let f : Rd → R be as defined above. Then, f is convex if and only if

f

(
k∑

i=1

αixi

)
≤

k∑
i=1

αif(xi),

for any x1,x2, . . . ,xk ∈ Rd and α1, . . . , αk ∈ [0, 1] such that
∑k

i=1 αi = 1.

Proof.
⇐: By definition.

⇒: f is convex ⇒ epi(f) is convex:

k∑
i=1

αi(xi, f(xi)) =

(
k∑

i=1

αixi,

k∑
i=1

αif(xi)

)
∈ epi(f).

■

Theorem 4 (Geometric Characterization of Convex Functions). Let f : Rd → R be a convex function
such that epi(f) is closed. Then, f can be represented as the pointwise supremum of all affine functions
h : Rd → R satisfying h ≤ f .

Observation 5 (Geometric Characterization of Convex Functions and their Conjugate Functions). We
consider a set:

F = {(y, c) ∈ Rd ×R : yTx− c ≤ f(x),∀x ∈ Rd}.

which consists of the coefficients of affine functions h : Rd → R satisfying h ≤ f . Clearly, we have:

yTx− c ≤ f(x) for all x ∈ Rd ⇐⇒ sup
x∈Rd

(yTx− f(x)) ≤ c.

This shows that F is the epigraph of the function f∗ : Rd → R, given by:

f∗(y) = sup
x∈Rd

(
yTx− f(x)

)
,

which is the conjugate function. Since F is closed and convex, f∗ is convex.
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2 Convexity-Preserving Transformations

As in the case of convex sets, it’s sometimes difficult to check directly from the definition whether a given
function is convex or not.

Theorem 6. The following hold:

(i) (Non-negative Combination): Let f1, . . . , fm : Rd → R be convex functions satisfying
⋂m

i=1 dom(fi) ̸=
∅. Then, for any α1, α2, . . . , αm ≥ 0, the function f : Rd → R defined by

f(x) =

m∑
i=1

αifi(x)

is convex.

(ii) (Pointwise Supremum): Let I be an index set for {fi}i∈I for all i ∈ I. Define the pointwise
supremum fi : R

d → R of {fi}i∈I by
f(x) = sup

i∈I
fi(x)

(note: I may not be a finite set). Suppose that dom(f) ̸= ∅. Then, the function f is convex.

Proof Idea The epigraph of f is the intersection of the epigraphs of fi. The intersection of (possibly
infinite) convex sets remains convex. ■

(iii) (Affine Transformation): Let g : Rd → R be a convex function, and let A : Rm → R
d be an affine

mapping. Suppose that range(A) ∩ dom(g) ̸= ∅. Then, f : Rm → R defined by

f(x) = g(A(x))

is convex.

(iv) (Composition with an Increasing Convex Function): Let g : Rd → R and h : R → R be
convex functions but not identically +∞. Suppose that h is increasing on dom(h). Define the function
f : Rd → R by f(x) = h(g(x)) with the convention h(+∞) = +∞. Suppose that dom(f) ̸= ∅. Then f
is convex.

Example 7 (Counter-example). Consider

h(x) = −
√
x when x ≥ 0

and g(x) = x2.

Then, we have
f(x) = h(g(x)) = −

√
|x|2 = −|x|,

which is nonconvex.

(v) (Restriction on Lines): Given a function f : Rd → R that is not identically +∞, a point x0 ∈ Rd,
and a direction h ∈ Rn, define the function f̃x0,h : R→ R by

f̃x0,h = f(x0 + th).

Then, the function f is convex if and only if the function f̃x0,h is convex for all x0 ∈ Rd and t ∈ R.
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Remark 8. The convexity of a high-dimensional function can always be verified by examining a col-
lection of one-dimensional functions.

Proof. Let x0,h be arbitrary. Then, for any t1, t2 ∈ R and α ∈ [0, 1], we have

f̂x0,h(αt1 + (1− α)t2) = f(x0 + (αt1 + (1− α)t2)h)

≤ αf(x0 + t1h) + (1− α)f(x0 + t2h)

= αf̃x0,h(t1) + (1− α)f̃x0,h(t2),

where the first inequality follows from the convexity of f .

Conversely, let x1,x2 ∈ Rd and α ∈ [0, 1]. Upon setting x0 = x1 and h = x2 − x1, we have

f((1− α)x1 + αx2) = f̃x0,h(α)

= f̃x0,h(α · 1 + (1− α) · 0)
≤ αf̃x0,h(1) + (1− α)f̃x0,h(0)

= αf(x2) + (1− α)f(x1),

where the first inequality follows from the convexity of f̃x0,h.

■

3 Differentiable Convex Functions

When a given function is differentiable, it’s possible to characterize its convexity via their derivatives.

Theorem 9. Let f : Ω → R be a differentiable function on the open set Ω ⊆ Rd and S ⊆ Rd be a convex
set. Then, f is convex on S if and only if

f(x) ≥ f(x̄) +∇f(x̄)T (x− x̄)

for all x, x̄ ∈ S.

When f is twice-differentiable, then we have

Theorem 10. Let f : S → R be a twice differentiable function on the open convex set S ⊆ Rd. Then f
is convex if and only if ∇2f(x) ⪰ 0 for all x ∈ S.

Example 11 (Counter-example). Consider a function f : R2 → R given by f(x, y) = x2−y2. This function
is convex on the set S = R× {0}. However, its Hessian is not postive semi-definite for any x, y ∈ R, i.e.,

∇2f(x, y) =

[
2 0
0 −2

]
.

4 Establishing Convexity of Functions

(i) Consider f : Rd × Sd
++ → R, f(x,Y) = xTY−1x.

Proof. By Proposition 2, we check the convexity of its epigraph, i.e.,

epi(f) = {(x,Y, t) ∈ Rd × Sd
++ ×R : Y ≻ 0,xTY−1x ≤ t},

=

{
(x,Y, t) ∈ Rd × Sd

++ ×R : Y ≻ 0,

[
Y x
xT t

]
⪰ 0

}
.

where the last equality follows from the Schur complement. ■
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(ii) Let f : Rm×n → R+, f(X) = ||X∥2, where ∥ · ∥2 is the spectral norm.

It is well known that (see, e.g., [1])

∥X∥2 = sup
∥v∥2=1,∥u∥2=1

vTXu.

By Theorem 6 (ii), we finished the proof.

(iii) Let f : Rd → R be given by f(x) = log
(∑d

i=1 exp(xi)
)
.

Proof. By Theorem 10, we compute the Hessian of f :

∂2f(x)

∂xi∂xj
=


exp(xi)∑d

k=1 exp(xk)
− exp(xi) exp(xj)

(
∑d

k=1 exp(xk))
2 if i = j,

− exp(xi) exp(xj)

(
∑d

k=1 exp(xk))
2 if i ̸= j.

This gives the compact form as

∇2f(x) =
1

(1Tz)2
(
diag(z)− zzT

)
,

where z = (exp(z1), exp(z2), . . . , exp(zd)). Next, we are trying to check the Hessian ∇2f(x) is positive
semi-definite for any x ∈ Rd. That is, for any v ∈ Rd, we have

vT∇2f(x)v =
1

(1Tz)2

( d∑
i=1

zi

)(
d∑

i=1

ziv
2
i

)
−

(
d∑

i=1

zivi

)2


=
1

(1Tz)2

( d∑
i=1

√
zi

2

)(
d∑

i=1

(
√
zivi)

2

)
−

(
d∑

i=1

√
zi
√
zivi

)2


≥ 0,

where the last inequality follows from the Cauchy-Schwarz inequality. ■

(iv) Let f : Rd ×R+ → R be given by f(x, t) = t log
(∑d

i=1 exp
(
xi

t

))
.

Sketch of Proof By Proposition 2, we check the convexity of its epigraph, i.e.,

epi(f) =

{
(x, t, r) ∈ Rd ×R++ ×R : log

(
d∑

i=1

exp
(xi

t

))
≤ r

t

}
.

By the properties of the perspective function, we only have to check the set{
(x, r) ∈ Rd ×R : log

(
d∑

i=1

exp(xi)

)
≤ r

}
.

■
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(v) Let f : Sd
++ → R be given by f(X) = − ln detX. For those readers who are well versed in matrix

calculus (see, e.g., [3] for a comprehensive treatment), the following formulas should be familiar:

∇f(X) = X−1, ∇2f(X) = X−1 ⊗X−1.

Here, ⊗ denotes the Kronecker product. Since X−1 ≻ 0, it can be shown that X−1 ⊗X−1 ≻ 0.

Proof. Let X0 ∈ Sd
++ and H ∈ Sd. Define the set

D = {t ∈ R : X0 + tH ≻ 0} = {t ∈ R : λmin(X0 + tH) > 0}.

Since λmin(·) is continuous (see, e.g., [2, Chapter IV, Theorem 4.11], we see that D is open and convex.
Now, we consider fX0,H : D → R given by

f̂X0,H(t) = f(X0 + tH).

For any t ∈ D, we compute

f̃X0,H(t) = − ln det(X0 + tH)

= − ln det
(
X

1
2
0

(
I+ tX

− 1
2

0 HX
− 1

2
0

)
X

1
2
0

)
= −

(
d∑

i=1

ln(1 + tλi) + ln detX0

)
,

where λ1, . . . , λd are the eigenvalues of X
− 1

2
0 HX

− 1
2

0 .

Then, by Theorem 6 (v), we only have to prove the convexity of f̃X0,H(·). Since the domain D is open
and convex, we can apply Theorem 10 and check its second derivative:

f̃
′′

X0,H(t) =

d∑
i=1

λ2
i

(1 + tλi)2
≥ 0.

■
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This lecture draws extensively from the material available at ENGG 5501 Handout 2 taught by Prof. Anthony
Man-Cho So.
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