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1 Introduction

Every optimization problem may be viewed as either from the primal or dual - the principle of duality. Duality
develops the relationship between one optimization problem and another related optimization problem.

• Primal and dual (i.e., there are various dual formulations) enjoy different structures → computational
tractability.

• Interpretation (Modeling/Economic)

min Cost [P]←→ max Utility [D]

What We Will Cover:

Different ways to construct the dual problems:

(i) Lagrangian Duality – Sion Minimax Theorem

(ii) A general viewpoint: Deriving the duality via studying the stability of an optimization to perturbation.

(a) Special case I: Lagrangian Duality

(b) Special case II: Fenchel-Rockafellar Duality

2 Lagrangian Duality

To begin our investigation, let us focus on the following class of optimization problems (P):

inf f(x)
subject to gi(x) ≤ 0 for i ∈ [m1]

hj(x) = 0 for j ∈ [m2]
x ∈ X .

(P)

Here, f, g1, g2, · · · , gm1 , h1, h2, · · · , hm2 : Rd → R are arbitrary functions and X is an arbitrary set. For
the sake of brevity, we shall write the first two sets of constraints in (P) as G(x) ≤ 0 and H(x) = 0,
where G : Rd → R

m1 is given by G(x) = (g1(x), · · · , gm1
(x)) and H : Rd → R

m2 is given by H(x) =
(h1(x), · · · , hm2

(x)).

One way of constructing a dual of (P) is to reformulate it using a penalty function approach. We observe
that (P) is equivalent to

v⋆p = inf
x∈X

sup
ν∈Rm1

+ ,ω∈Rm2

L(x,ν,ω)

where L(x,ν,ω) is the Lagrangian function defined as:

L(x,ν,ω) := f(x) + ν⊤G(x) + ω⊤H(x).
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This follows from the fact that for any x ∈ X :

sup
ν∈Rm1

+ ,ω∈Rm2

L(x,ν,ω) =

{
f(x) if G(x) ≤ 0 and H(x) = 0

+∞ otherwise.

Now, it’s clear that for any x̄ ∈ X and (ν̄, ω̄) ∈ Rm1
+ ×Rm2 ,

inf
x∈X

L(x, ν̄, ω̄) ≤ L(x̄, ν̄, ω̄) ≤ sup
ν∈Rm1

+ ,ω∈Rm2

L(x̄,ν,ω)

Hence, we have:
sup

ν∈Rm1
+ ,ω∈Rm2

inf
x∈X

L(x,ν,ω)︸ ︷︷ ︸
(Dual)

≤ inf
x∈X

sup
ν∈Rm1

+ ,ω∈Rm2

L(x,ν,ω)︸ ︷︷ ︸
(Primal)

where the left hand side is defined as Lagrangian Dual and the right hand side is the primal problem.

Remark 1. It is worth noting that since the set X is arbitrary, there are many different Lagrangian duals
for the same primal problem. Different choices of dual problems will lead to different outcomes, both in terms
of the dual optimal value and the computational efforts required to solve the dual problem. Whether it is easy
to solve a particular choice of dual problem depends on the structure of the problem.

We observe from the formulation of the dual problem, i.e.,

v⋆d = sup
ν∈Rm1

+ ,ω∈Rm2

inf
x∈X

f(x) + ν⊤G(x) + ω⊤H(x). (D)

Regardless of the structures of f,G,H, the dual problem is always concave because the pointwise infimum
preserves concavity. Such an observation suggests the strong duality (v⋆p = v⋆d) may not hold. However, it is
clear that the weak duality (v⋆p ≥ v⋆d) always holds.

Example 2 (A Primal-Dual Pair with a Non-Zero Duality Gap). Consider the following primal problem:

min −x
subject to x ≤ 1

x ∈ {0, 2}.
(1)

It is easy to get v⋆p = 0 and x⋆ = 0. Then, we derive its Lagrangian dual as:

v⋆d = sup
ν≥0

inf
x∈{0,2}

(−x+ ν(x− 1)) = min{−ν, ν − 2},

which gives
v⋆d = −1 and v⋆ = 1.

This shows a non-zero duality gap.

It is natural to ask

When does the strong duality hold?

Definition 3 (Saddle Point). (x̄, ν̄, ω̄) ∈ Rd ×Rm1
+ ×Rm2 is a saddle point of the Lagrangian function

associated with (P) if the following conditions are satisfied:

(i) x̄ ∈ X

(ii) ν̄ ≥ 0
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(iii) For all x ∈ X and (ν,ω) ∈ Rm1
+ ×Rm2 :

L(x̄,ν,ω) ≤ L(x̄, ν̄, ω̄) ≤ L(x, ν̄, ω̄).

It implies that x̄ minimizes L over X when (ν,ω) is fixed at (ν̄, ω̄). Similarly, (ν̄, ω̄) maximizes L over
R

m1
+ ×Rm2 when x is fixed at x̄.

Theorem 4. The point (x̄, ν̄, ω̄) ∈ Rd×Rm1
+ ×Rm2 is a saddle point of the Lagrangian function L associated

with (P) if and only if the duality gap between (P) and (D) is zero. x̄ and (ν̄, ω̄) are the optimal solutions
of (P) and (D) respectively.

Existence of saddle point ⇐⇒ Strong Duality

The above theorem is difficult to apply, as it essentially implies that verifying strong duality requires solving
both the primal and dual problems first. A natural question arises: Can the same relationship hold under
different conditions? The following result, a special case of Sion’s minimax theorem [5], provides one such
possibility:

Theorem 5 (A Special Case of Sion’s Minimax Theorem). Let L be the Lagrangian function associated with
(P). Suppose that

(i) X is a compact convex subset of Rd

(ii) (ν,ω) 7→ L(x,ν,ω) is continuous and concave on Rm1
+ ×Rm2 for each x ∈ X

(iii) x 7→ L(x,ν,ω) is continuous and convex on X for each (ν,ω) ∈ Rm1
+ ×Rm2

Then, we have
sup

ν∈Rm1
+ ,ω∈Rm2

min
x∈X

L(x,ν,ω) = min
x∈X

sup
ν∈Rm1

+ ,ω∈Rm2

L(x,ν,ω).

3 Perturbations and Bifunctions

When solving an optimization problem, one is often interested not only in the optimal value but also in how
this value changes under small perturbations.
More formally, consider an arbitrary convex function F : X×Y → R and a parametric optimization problem:

p(y) = inf
x∈X

F (x,y)

where y is the perturbation parameter. Here, F (x,y) can be viewed as a perturbation function around the
original problem

p(0) := inf
x∈X

F (x,0). (Pe)

Remark 6. A natural goal is to study how p(y) changes when y is perturbed around 0. It turns out that
∂p(0) coincides with the optimal solution of the dual problem (see [2, Section 4.2]). There are numerous
elegant results connecting subdifferential calculus rules with duality theory.

Now, we define the new parametric family of problems:

q(x) = sup
y
−F ∗(x,y).

Then, we have the parametric dual at the origin, i.e.,

q(0) = sup
y
−F ∗(0,y). (De)

Next, we aim to connect the primal and dual problems using the following results on the biconjugate of
convex functions.
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Proposition 7. If f : Rd → R is proper, lower-semicontinuous and convex, we have f∗∗ = f [3, Theorem
12.2].

Claim 8 (Inf-projection). p∗(y) = F ∗(0,y).

Proof.

p∗(y) = sup
s

(
s⊤y − p(s)

)
= sup

s

(
s⊤y − inf

x
F (x, s)

)
= sup

s,x

(
s⊤y − F (x, s)

)
= sup

s,x

(
(x, s)⊤(0,y)− F (x, s)

)
= F ∗(0,y).

■

Moreover, we have
p∗∗(0) = sup

y
(⟨0,y⟩ − p∗(y)) = sup

y
−F ∗(0,y)≤ p(0).

where the second equality follows from Claim 8. To make the last inequality an equality, we need to apply
Proposition 7 and have:

Theorem 9 (General Duality Theorem). Suppose that F : X × Y → R is proper, lower-semicontinuous,
and convex. Then, if 0 ∈ int(dom(p)), strong duality holds.

We refer the details proof to [4, Theorem 11.39].

Definition 10 (Interior Point). Given an arbitrary set S ⊆ Rd, its interior is defined by:

int(S) = {x ∈ S : B(x, ϵ) ⊆ S, for some ϵ > 0} .

Example 11.
S = [0, 1] with int(S) = (0, 1).

3.1 Recovering the General Lagrangian Duality

We revisit (P) as
inf f(x)

subject to G(x) ≤ 0
H(x) = 0
x ∈ X ,

(2)

which is equivalent to
inf
x∈X

f(x) + θ(A(x)).

where
A(x) = (G(x), H(x)) and θ(A(x)) = 1{x∈Rd:G(x)≤0}(x) + 1{x∈Rd:H(x)=0}(x).

Now, we are ready to construct the parametric optimization problem:

p(y) = inf
x∈X

f(x) + θ(A(x) + y) with y = (ν,ω).
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Then, the dual problem admits:

p∗∗(0) = sup
y
−F ∗(0,y)

= sup
y
− sup

x,u
(x,u)⊤(0,y)− F (x,u)

= sup
y

inf
x,u

F (x,u)− (x,u)⊤(0,y)

= sup
y

inf
x,u

f(x) + θ(A(x) + u)− u⊤y

= sup
y

inf
x

f(x) + inf
u

θ(A(x) + u)− uTy.

Moreover, we know

inf
u

θ(A(x) + u)− uTy

= inf
u1

1{x∈Rd:G(x)+u1≤0}(x)− uT
1 ν + inf

µ2

1{x∈Rd:H(x)+u2=0}(x)− uT
2 ω

=

{
G(x)Tν +H(x)Tω if ν ≤ 0

−∞ otherwise.

Combining them together, we have

p∗∗(0) = sup
ν∈Rm1

+ ,ω∈Rm2

inf
x

f(x) + νTG(x) +wTH(x).

Remark 12. The regularity condition 0 ∈ int(dom(p)) implies the standard slater condition — exists
x such that G(x) < 0.

4 Further Reading

Please refer to [4, Chapter 11.H] and [1, Chapter 2.5] for further reading.
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