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1 Summary of (Sub)gradient Methods under Different Conditions

Function Classes Residual Function R Covergence Rate Step Size

Convex + L-Smooth f(xk)− f∗ O
(
1
k

)
Constant 1/L

µ-Convex + L-Smooth f(xk)− f∗, ∥xk − x∗∥2 O
(
exp

(
− k

κ

))
Constant 1/L

µ-PL + L-Smooth f(xk)− f∗ O
(
exp

(
− k

κ

))
Constant 1/L

L-Smooth mink∈[K] ∥∇f(xk)∥ O
(

1√
k

)
Constant 1/L

Convex + L-Lip mink∈[K] f(x
k)− f∗ O

(
log k√

k

)
O
(

1√
k

)
Strongly Convex + L-Lip mink∈[K] f(x

k)− f∗ O
(
1
k

)
O
(
1
k

)
Weakly Convex E

[
∥∇f 1

ρ̂
(xk)∥2

]
O
(

1
k1/4

)
O
(

1√
k

)
Table 1: Summary of (Sub)gradient Methods under Different Conditions

Remark 1. Let κ be a constant number defined as L/µ.

Remark 2. When the problem is smooth, we can see that it is straightforward to extend from convex to
nonconvex cases:

f(xk)− f∗, ∥xk − x∗∥ → ∥∇f(xk)∥

However, obtaining a valid stationary measure for nonsmooth cases is more challenging. Today, we
will first discuss a subclass of nonsmooth nonconvex functions—weakly convex functions—and explore their
stationary measures using the Moreau envelope technique.

2 Weakly Convexity and Modreau Envelope [1, 2]

Definition 3 (Weakly Convexity). A function f : Rd → R̄ is ρ-weakly convex if there exists ρ > 0 such that
f(x) + ρ

2∥x∥
2 is convex, that is:

f(y) ≥ f(x) +∇f(x)⊤(y − x)− ρ

2
∥y − x∥2 ∀x,y ∈ Rd.

Fact 4. L-Smooth functions are L-weakly convex functions.

This categorizes L-smooth functions within the broader class of weakly convex functions, which includes
nonsmooth ones. To extend the gradient norm to the nonsmooth case, one might consider the distance from
zero to the subdifferential as a natural extension. However, this approach can lead to discontinuities. For
example, with f(x) = |x|, we find that dist(0, ∂f(x)) = 1 everywhere except at x = 0. In other words, we
cannot use this measure to quantify the near-stationarity. Luckily, we have the following observation.
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Observation 5. Weakly convex problems naturally admit a continuous measure of stationarity through
implicit smoothing.

Definition 6 (Moreau Envelope (Inf Projection)). Suppose that 0 < λ < ρ−1. We define the Moreau
envelope of f with respect to the modulus λ as follows:

fλ(x) = inf
y

{
f(y) +

1

2λ
∥x− y∥2

}
.

Remark 7. As long as f is ρ-weakly convex and λ < ρ−1, then the function fλ(x) is C1-smooth with
gradient:

∇fλ(x) = λ−1(x− proxλf (x)),

where prox(·)λf is the proximal operator defined as

Definition 8 (Proximal Operator). The proximal operator of f at the point x with respect to the modulus
0 < λ < ρ−1 is defined as:

proxλf (x) = argmin
y

{
f(y) +

1

2λ
∥y − x∥2

}
Theorem 9 (Envelope Theorem (Informal Version)). Consider a f : Rd → R defined as:

f(x) = max
y∈Y

g(x,y).

If g(·,y) is smooth for every y ∈ Y and has a unique maximizer y⋆(x) for each x, then we know the function
f is differentiable whose gradient can be computed as

∇f(x) = ∇xg(x,y)
∣∣∣
y=y⋆(x)

.

Please also see the generalized version in [3, Theorem 10.31] (Danskin’s Theorem).

Example 10. Consider the following structured nonsmooth minimization problem:

min
x

[
max
k∈[K]

fk(x)

]
If each fk is L-smooth, then the minimization objective is also weekly convex but non-smooth.

Question: Does ∥∇fλ(x)∥ have an intuitive interpretation in terms of the near-stationarity of the target
problem infx∈Rd f(x)?

Proposition 11. For any x ∈ Rd, we define the proximal point x̂ := proxλf (x). Then, we have:

(i) ∥x̂− x∥ = λ∥∇fλ(x)∥

(ii) f(x̂) ≤ f(x)

(iii) dist(0, ∂f(x)) ≤ ∥∇fλ(x)∥.
Proof. The first statement can be easily proved by the fact:

∥∇fλ(x)∥ = λ−1∥x− proxλf (x)∥ = λ−1∥x− x̂∥.

The second statement follows from the definition of Moreau envelope and proximal point:

f(x̂) +
1

2λ
∥x− x̂∥2 ≤ f(x) +

1

2λ
∥x− x∥2 = f(x).

The last one is given by the optimality condition of proximal point and the item (i): 0 ∈ ∂f(x̂) + 1
λ (x̂−

x). ■

Remark 12. A small gradient ∥∇fλ(x)∥ implies that x is ”near” some point x̂ that is approximate station-
ary.
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3 Subgradient Methods for Weakly Convex Functions

Algorithm 1 Subgradient Methods for Weakly Convex Functions

For k = 0 to K do
xk+1 = xk − tkgk, where gk ∈ ∂f(xk).

End
Sample k∗ ∈ {0, 1, 2, . . . ,K} according to the probability

P(k∗ = k) =
tk∑K
j=0 tj

.

Theorem 13. Suppose that f is ρ-weakly convex and L-Lipschitz. Let x∗
k be the point returned by the

algorithm. Then, for any ρ̂ > ρ, we have

E
[
∥∇f 1

ρ̂
(xk∗

)∥2
]
≤ ρ̂

ρ̂− ρ

(f 1
ρ̂
(x0)− f∗) + ρ̂L2

2

∑K
k=0 t

2
k∑K

k=0 tk

Remark 14. The term ρ̂L2

2

∑K
k=0 t

2
k is the price of non-smoothness. It is also worth mentioning that the

same cost applies to the stochastic case. Therefore, both subgradient and stochastic subgradient methods will
achieve the same convergence rate.

Remark 15. It is natural to set the step size as tk = 1√
k
as we hope the term

∑∞
k=0 t

2
k is summable but∑∞

k=0 t
2
k is not.

Proof. Set x̂k = prox 1
ρ̂ f

(xk). Then we have

f 1
ρ̂
(xk+1) = inf

y

{
f(y) +

ρ̂

2
∥y − xk+1∥2

}
≤ f(x̂k) +

ρ̂

2
∥x̂k − xk+1∥2

= f(x̂k) +
ρ̂

2
∥xk − tkgk − x̂k∥2

≤ f(x̂k) +
ρ̂

2
∥xk − x̂k∥2 + ρ̂

2
t2kL

2 + ρ̂tk⟨xk − x̂, gk⟩

= f 1
ρ̂
(xk) +

ρ̂

2
t2kL

2 + ρ̂tk⟨xk − x̂k, gk⟩

≤ f 1
ρ̂
(xk) +

ρ̂

2
t2kL

2 + ρ̂
(
f(x̂k)− f(xk) +

ρ

2
∥xk − x̂k∥2

)
,

where the second inequality follows from the L-Lipschitz continuity of f , and the last one is given by the
weakly convex of f.

Telescope this sum from k = 0 to k = K:

f 1
ρ̂
(xK+1) ≤ f 1

ρ̂
(x0) +

ρ̂

2
L2

K∑
k=0

t2k − ρ̂

K∑
k=0

tk

(
f(x̂k)− f(xk) +

ρ

2
∥xk − x̂k∥2

)
,

which is:

1∑K
k=0 tk

K∑
k=0

tk

(
f(x̂k)− f(xk) +

ρ

2
∥xk − x̂k∥2

)
≤

(
f 1

ρ̂
(x0)− f 1

ρ̂
(xk+1)

)
+ ρ̂

2L
2
∑K

k=0 t
2
k

ρ̂
∑K

k=0 tk
.
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By the strong convexity of x → f(x) + ρ̂
2∥x− xk∥2, we have that:

f(xk)− f(x̂k) +
ρ

2
∥xk − xk∥2 =

(
f(xk) +

ρ̂

2
∥xk − x̂k∥2

)
−

(
f(x̂k) +

ρ̂

2
∥xk − x̂k∥2

)
+

ρ̂− ρ

2
∥x̂k − xk∥2

≥ (ρ̂− ρ)∥x̂k − xk∥2

=
ρ̂− ρ

ρ2
∥∇f 1

ρ̂
(xk)∥2.

Thus, we have

E
[
∥∇f 1

ρ̂
(x∗

k)∥2
]
≤ ρ̂

ρ̂− ρ

(f 1
ρ̂
(x0)− f∗) + ρ̂L2

2

∑K
k=0 t

2
k∑K

k=0 tk
.

■

4 Proximal Gradient Descent

Then, we continue to consider the structured nonsmooth probelm as below:

inf
x∈Rd

F (x) := f(x) + g(x) (CP)

where:

(i) f : Rd → R is L-smooth,

(ii) g : Rd → R is convex, closed, and (possibly) non-smooth,

(iii) proxtg is easily computed. (e.g., ℓ1, ℓ∞ norms)

Example 16 (LASSO Problem).

min
x∈Rd

[
1

2
∥Ax− b∥2 + λ∥x∥1

]
The proximal operator for the ℓ1 norm is given by:

proxλ∥x∥1
(x) = argmin

y

[
1

2
∥y − x∥2 + λ∥y∥1

]
This is also known as soft-thresholding and satisfies the Karush-Kuhn-Tucker (KKT) conditions.

Remark 17. (i) If g = 0, then the PGD reduces to the GD.

(ii) If f = 0, then the PGD reduces to the proximal point descent.

(iii) If g = 1X (indicator of set X ), then PGD becomes projected GD.
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Algorithm 2

The Gradient Descent (GD) follows:

xk+1 = xk − t∇f(xk) (GD)

= argmin
x

{
∇f(xk)⊤(x− xk) +

1

2t
∥x− xk∥2

}
,

where the minimization objective is the quadratic upper bound.
The Promixal Gradient Descent (GD) follows:

xk+1 = argmin
x

{
∇f(xk)⊤(x− xk) +

1

2t
∥x− xk∥2 + g(x)

}
(PGD)

= argmin
x

{
1

2t
∥x− (xk − t∇f(xk))∥2 + g(x)

}
= proxtg(x

k − t∇f(xk)).
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