
COMM 616: Modern Optimization with Applications in ML and OR 2024-25 Fall

Lecture 9: Unified Convergence Analysis Framework for PGD
Instructor: Jiajin Li

1 Optimization Problem

In this class, we focus on
min
x∈Rd

F (x) := f(x) + g(x). (P)

Here, we have

(i) The function f : Rd → R is L-smooth.

(ii) The function g : Rd → R is convex, closed, and (possibly) non-smooth.

(iii) The proximal operator proxtg(·) is easily computed. (e.g., ℓ1, ℓ∞ norms).

PGD is already general enough to cover widely used algorithms:

(i) Proximal Point Algorithms (PPA) when f(x) = 0. Generally speaking, we focus on a pure nonsmooth
convex optimization problem.

(ii) Gradient Descent (GD) when g(x) = 0.

(iii) Projected Gradient Descent (PGD) when g(x) = IX (x) where X is a convex and closed set.

2 Convergence Analysis

When the function is convex or strongly convex, the convergence analysis of Proximal Gradient Descent
(PGD) relies on the following crucial lemma:

Lemma 1. Suppose f is L-smooth, µ-strongly convex, and x+ = proxtg(x− 1
L∇f(x)). Then we have

F (x+) ≤ F (z) + L⟨x+ − z,x− x+⟩ +
L

2
∥x− x+∥2 − µ

2
∥x− z∥2

for any x, z ∈ Rd.

Theorem 2. Suppose that tk = 1
L for any k ≥ 0. Then, we have

(i) (Convexity):

F (xK) − F ⋆ ≤ L∥x0 − x⋆∥2

2K
.

(ii) (µ-Strongly Convexity):

∥xK − x⋆∥2 ≤ exp

(
−K
κ

)
∥x0 − x⋆∥2.

Remark 3. Let κ be a constant number defined as L/µ.
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Proof. (i): Picking z = xk in Lemma 1 yields

F (xk+1) − F (xk) ≤ −L
2
∥xk+1 − xk∥2.

Next, we pick z = x⋆ in Lemma 1 and get

F (xk+1) − F (x⋆) ≤ −L(xk − xk+1)T (x⋆ − xk+1) +
L

2
∥xk+1 − xk∥2

=
L

2
(xk − xk+1)T (xk + xk+1 − 2x⋆)

=
L

2

(
∥xk − x⋆∥2 − ∥xk+1 − x⋆∥2

)
.

Telescoping it from k = 0 to k = K, we have

K∑
k=0

F (xk+1) − F (x⋆) ≤ L

2
∥x0 − x⋆∥2.

Moreover, as the sequence {F (xk)}k≥0 is monotonically decreasing, we conclude our proof.
(ii): Similar with the proof in case (i). We have

F (xk+1) − F (x⋆) ≤ L

2

(
(1 − µ

L
)∥xk − x⋆∥2 − ∥xk+1 − x⋆∥2

)
.

Then, we have

∥xk+1 − x⋆∥2 ≤
(

1 − µ

L

)
∥xk − x⋆∥2.

■

Without the convexity of f , the convergence analysis of PGD under the nonconvex setting differs from
the case in Lemma 1. Instead, we rely on the following sufficient decrease property:

Proposition 4 (Sufficient Decrease Property). Suppose that f is L-smooth and g is convex. Let x+ =
proxtg(x− t∇f(x)). Then, we have

F (x+) ≤ F (x) −
(

1

2t
− L

2

)
∥x+ − x∥2.

Proof. By definition of the proximal operator, we have

x+ = arg min
y

{
1

2t
∥y − (x− t∇f(x))∥2 + g(y)

}
.

Since x+ is the optimal solution of the above optimization problem, we have

1

2t
∥x+ − (x− t∇f(x))∥2 + g(x+) ≤ t

2
∥∇f(x)∥2 + g(x),

which implies
1

2t
∥x+ − x∥2 + ⟨x+ − x,∇f(x)⟩ + g(x+) ≤ g(x). (1)

Moreover, since f is L-smooth, we have

f(x+) ≤ f(x) + ⟨∇f(x),x+ − x⟩ +
L

2
∥x+ − x∥2. (2)
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Combining (1) and (2) yields

f(x+) + g(x+) ≤ f(x) + g(x) +

(
L

2
− 1

2t

)
∥x+ − x∥2.

■

Now, we are ready to conduct the convergence analysis of PGD under the nonconvex setting. A natural
task is to connect the relative change ∥x+ − x∥ with a certain optimality residual. Thus, we are able to do
the average error type analysis.

Proposition 5 (Safeguard Condition). Suppose that f is L-smooth and g is convex. Let x+ = proxtg(x−
t∇f(x)). Then, we have

dist(0, ∂F (x+)) ≤
(

1

t
+ L

)
∥x+ − x∥.

Proof. Recall that

x+ = arg min
y

{
1

2t
∥y − (x− t∇f(x))∥2 + g(y)

}
.

We drive its optimality condition as

0 ∈ 1

t
(x+ − x + t∇f(x)) + ∂g(x+)

∈ 1

t
(x+ − x) + (∇f(x) −∇f(x+)) + ∇f(x+) + ∂g(x+).

Then we have,

dist(0, ∂F (x+)) ≤ 1

t
∥x+ − x∥ + L∥x+ − x∥,

where the inequality follows from the L-Lipschitz of the gradient operator ∇f(·). ■

From the sufficient decrease property, it is easy to get the final convergence result under the nonconvex
setting.

Theorem 6 (Nonconvex). Suppose that f is L-smooth and g is convex and closed. Let t = 1
2L . Then, we

have

min
k∈[K]

dist(0, ∂F (xk+1) ≤ O

(
1√
K

)
.

Proof. From Proposition 11, we have

F (xk+1) − F (xk) ≤ −L
2
∥x+ − x∥2 ≤ − 1

18L
dist2(0, ∂F (xk+1)),

where the last inequality follows from Proposition 12. Then, we do the telescoping from k = 0 to k = K and
get

min
k∈[K]

dist2(0, ∂F (xk+1) ≤ F (x0) − F ⋆

18LK
.

■

So far, you can see a significant distinction between the convex and nonconvex settings. A natural
question raises:

Can we provide a unified convergence analysis framework for PGD at least?
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3 Unification under K L Framework

Definition 7 (K L Exponent). Suppose that the problem (P) has a nonempty solution set and a finite optimal
value. We say F (x) is a K L function with the exponent θ ∈ (0, 1] at the point x if we have

dist(0, ∂F (x)) ≥
√

2µ

(
F (x) − max

x∈Rd
F (x)

)θ

.

Remark 8. As we discussed in the previous lectures, if F (x) is µ-strongly convex, then we know F (x) is
a K L function with the exponent θ = 1

2 . When the function F (x) is just convex, we know that the function
F (x) is a K L function with the exponent θ = 1 at all points within a bounded distance from the optimal set,
i.e.,

F (x) − F (x⋆) ≤ gT (x− x⋆).

for all g ∈ ∂F (x). Then, we have

1

∥x− x⋆∥
(F (x) − F (x⋆)) ≤ dist(0, ∂F (x)). (3)

3.1 Recover the Convergence Result (Convex)

Assumption 9. The function F : Rd → R is level bounded (Coerciveness).

Proof. From Proposition 11 and Proposition 12, we have

F (xk+1) − F (xk) ≤ − 1

18L
dist2(0, ∂F (xk+1)).

Then, we know the sequence {F (xk)}k≤0 is monotonically decreasing and F (xk) ≤ F (x0) holds for any
k ≥ 0 from Assumption 9. WLOG, we can assume that

dist(xk,X ⋆) ≤ D,∀k ≥ 0.

Armed with (3), we have

F (xk+1) − F (xk) ≤ − 1

18LD2
(F (xk+1) − F (x⋆))2,

which implies
1

F (xk+1) − F ⋆
≥ k + 1

36LD2
.

(Deriving by the mathematical induction). We finished the proof. ■

4 Recover the Convergence Result (Strongly Convex)

Proof. From Proposition 11 and Proposition 12, we have

F (xk+1) − F (xk) ≤ − 1

18L
dist2(0, ∂F (xk+1)).

As F is µ-strongly convex, we have

F (xk+1) − F (xk) ≤ − µ

9L
(F (xk+1) − F (x⋆)).

Finally, we get

F (xk+1) − F ⋆ ≤
(

1/(1 +
µ

9L
)
)
F (xk) − F ⋆.

■
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A general convergence analysis template:

Theorem 10. Suppose that the following conditions hold.

(i) (Sufficient Decrease Property): For any k ≥ 0, we have

F (xk+1) − F (xk) ≤ −κ1∥xk+1 − xk∥2,

for some constant κ1 > 0. It aims to quantify the algorithmic progress at each step.

(ii) (Safeguard Condition): For any k ≥ 0, we have

dist(0, ∂F (xk+1)) ≤ κ2∥xk+1 − xk∥,

for some constant κ2 > 0. It links the relative change produced by the algorithm to the optimality
residual.

(iii) (Growth Condition):

dist(0, ∂F (x)) ≥
√

2µ

(
F (x) − max

x∈Rd
F (x)

)θ

,

which depends solely on the problem and is independent of the algorithm.

Then, we have

F (xK) − F ⋆ ≤ O(K
− 1

(2θ−1)+ ).

Proof.

F (xk+1) − F (xk) ≤ −κ1∥xk+1 − xk∥2

≤ −κ1
κ22

dist2(0, ∂F (xk+1))

≤ −2κ1µ

κ22
(F (xk+1) − F ⋆)2θ.

Define R(xk) := F (xk) − F ⋆. Then, we have

R(xk+1) −R(xk) ≤ −αR(xk+1)2θ,

where α := 2κ1µ
κ2
2

.

Case 1: When θ ∈ (0, 1/2), we have

R(xk+1) −R(xk) ≤ −αR(xk+1)R(xk+1)2θ−1.

As 2θ − 1 < 0, we have R(xk+1)2θ−1 ≥ R(x0)2θ−1. We can get the linear convergence rate.
Case 2: When θ = 1/2, we trivially get the result.
Case 3: When θ ∈ (1/2, 1], we have:

R(xk) −R(xk+1) ≥ αR(xk+1)2θ.

Consider the following two cases:
1. If R(xk) ≤ 2R(xk+1), we denote ψ(s) = 1

2θ−1s
−(2θ−1) and then

ψ(R(xk+1)) − ψ(R(xk)) =

∫ R(xk)

R(xk+1)

−ψ′(s)ds =

∫ R(xk)

R(xk+1)

s−2θds

≥ R(xk)−2θ(R(xk) −R(xk+1)) ≥ α

(
R(xk+1)

R(xk)

)2θ

≥ α

22θ
≥ α

4
.
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2. If R(xk) > 2R(xk+1), we have

ψ(R(xk+1)) − ψ(R(xk)) =
1

2θ − 1

(
R(xk+1)−(2θ−1) −R(xk)−(2θ−1)

)
≥ 1

2θ − 1

(
R(xk+1)−(2θ−1) − (2R(xk+1))−(2θ−1)

)
≥ 1 − 2−(2θ−1)

2θ − 1
R(xk+1)−(2θ−1) ≥ 1 − 2−(2θ−1)

2θ − 1
R(x0)−(2θ−1).

Combing these two cases, we have

ψ(R(xk+1)) − ψ(R(xk)) ≥ min

{
α

4
,

1 − 2−(2θ−1)

2θ − 1
R(x0)−(2θ−1)

}
=

C

2θ − 1
> 0.

Hence, we have

ψ(R(xk)) ≥ ψ(R(x0)) +
C

2θ − 1
k ≥ C

2θ − 1
k

and
1

2θ − 1
R(xk)−(2θ−1) ≥ C

2θ − 1
k → R(xk)−(2θ−1) ≥ Ck.

Finally, we have

R(xk) ≤ (ck)−
1

2θ−1 .

■

5 Convergence Analysis of PPA (Nonconvex)

Similar with the analysis of PGD, we only have to check sufficient decrease and safeguard properties.

Proposition 11 (Sufficient Decrease Property). Suppose that F is ρ-weakly convex. Let x+ = proxtF (x)
where t−1 > ρ. Then, we have

F (x+) ≤ F (x) − 1

2

(
1

t
− ρ

)
∥x+ − x∥2.

Proof. By definition of the proximal operator, we have

x+ = arg min
y

{
1

2t
∥y − x∥2 + F (y)

}
.

Since x+ is the optimal solution of the ( 1
t − ρ)-strongly convex optimization problem, we have

1

2

(
1

t
− ρ

)
∥x+ − x∥2 ≤ F (x+) − F (x).

■

Proposition 12 (Safeguard Condition). Suppose that F is ρ-weakly convex. Let x+ = proxtF (x) where
t−1 > ρ. Then, we have

dist(0, ∂F (x+)) ≤ 1

t
∥x+ − x∥.
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Proof. Recall that

x+ = arg min
y

{
1

2t
∥y − x∥2 + F (y)

}
.

We drive its optimality condition as

0 ∈ 1

t
(x+ − x) + ∂F (x+),

which implies

dist(0, ∂F (x+)) ≤ 1

t
∥x+ − x∥.

■

Theorem 13 (Nonconvex). Suppose that F is ρ-weakly convex and t−1 > ρ. Then, we have

min
k∈[K]

dist(0, ∂F (xk+1) ≤ O

(
1√
K

)
.
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