COMM 616: Modern Optimization with Applications in ML and OR 2024-25 Fall

Lecture 9: Unified Convergence Analysis Framework for PGD

Instructor: Jiajin Li

1 Optimization Problem

In this class, we focus on

min F(e) i= f(2) + g(a). (P)

Here, we have
(i) The function f:R? — R is L-smooth.
(i) The function g : R? — R is convex, closed, and (possibly) non-smooth.
(iii) The proximal operator prox;,(-) is easily computed. (e.g., {1, £~ norms).
PGD is already general enough to cover widely used algorithms:

(i) Proximal Point Algorithms (PPA) when f(x) = 0. Generally speaking, we focus on a pure nonsmooth
convex optimization problem.

(ii) Gradient Descent (GD) when g(z) = 0.

(iii) Projected Gradient Descent (PGD) when g(x) = Iy (x) where X is a convex and closed set.

2 Convergence Analysis

When the function is convex or strongly convex, the convergence analysis of Proximal Gradient Descent
(PGD) relies on the following crucial lemma:

Lemma 1. Suppose f is L-smooth, u-strongly conver, and x= = prox,, (T — %Vf(:c)) Then we have
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F(z®) < F(z) + Lia* - 5,2 —2) + S e — 2P - Lo — 22

for any x,z € R?,
Theorem 2. Suppose that t, = % for any k > 0. Then, we have
(i) (Convexity):
L||2® — a*|?
Fx®) - < 2~ 1
@) =7 K

(i) (u-Strongly Convezity):
K
% a7 < exp (-2 ) o — .
K

Remark 3. Let k be a constant number defined as L/ .



Proof. (i): Picking z = ¥ in Lemma 1 yields
L
F(wk+1) F(:I:k) < 5 ||wk+1 :I:kHz

Next, we pick z = * in Lemma 1 and get

L
F(il:k+1) o F(:B*) < —L(il)k o :I:]H_l)T((E* o il:k+1) + §||wk+l o wk||2

L

_ E(wk _ $k+1)T(fﬂk + wk+1 _ 2$*)
L * *
=5 (2" = 2" = = —2*?).

Telescoping it from k = 0 to £k = K, we have
< L
SR~ Fat) < S [la” — ).
k=0

Moreover, as the sequence {F(x*)};>0 is monotonically decreasing, we conclude our proof.
(ii): Similar with the proof in case (i). We have
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k4+1y ) <« = RN w12 (e kL k(2
F@h) = F@) < 5 (1= B)lle* — 2|2 - " —27|?).

Then, we have
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Without the convexity of f, the convergence analysis of PGD under the nonconvex setting differs from
the case in Lemma 1. Instead, we rely on the following sufficient decrease property:

Proposition 4 (Sufficient Decrease Property). Suppose that f is L-smooth and g is convexr. Let xT =
prox,,(x — tV f(x)). Then, we have
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Fat) < Flo) - (- 5 ) le" ~ ol

Proof. By definition of the proximal operator, we have
. 1
o —argmin{ 57l - (e~ (V7 @)IP + a(o) |
y

Since 1 is the optimal solution of the above optimization problem, we have

Szt — (@~ V@) +g(eh) < LIVI@)IP + g(e),

which implies
1
sl =+ (2" —2, V@) + ") < g(@). (1)

Moreover, since f is L-smooth, we have

F*) < (@) + (V@) @t —2) + ot x| )



Combining (1) and (2) yields

L 1

F@t) +glat) < f@)+ (@) + (5 - 5 ) lat - alP

Now, we are ready to conduct the convergence analysis of PGD under the nonconvex setting. A natural
task is to connect the relative change || — x| with a certain optimality residual. Thus, we are able to do
the average error type analysis.

Proposition 5 (Safeguard Condition). Suppose that f is L-smooth and g is convezr. Let + = prox,,(z —
tVf(x)). Then, we have

dist(0,0F (zT)) < (1 + L> |zt — .

Proof. Recall that
. 1
x’ = argmin {Qtlly — (x —tVf()]* + g(y)} :
Yy

We drive its optimality condition as

0e %(er —x +tVf(z))+ dg(z)
€ 1(e" — )+ (Vf(x) - Vi(eh) + V(") + dgla®).
Then we have,
ist(0,0F (&) < & — @] + Lla* ~ ],
where the inequality follows from the L-Lipschitz of the gradient operator V f(-). |

From the sufficient decrease property, it is easy to get the final convergence result under the nonconvex

setting.
Theorem 6 (Nonconvex). Suppose that f is L-smooth and g is convex and closed. Let t = ﬁ Then, we

have

1
in dist(0, 0F (**! <0<).
jeffy OO <07

Proof. From Proposition 11, we have
L 1
F@h) - F(a¥) < =5 la* - o < - dist?(0, 0P (@),

where the last inequality follows from Proposition 12. Then, we do the telescoping from k£ = 0 to £k = K and
get

. F(z°) — F*
dist?(0,0F (zFt1) < =2 L~
Juin dist™(0,0F (@) < — o

So far, you can see a significant distinction between the convex and nonconvex settings. A natural
question raises:

Can we provide a unified convergence analysis framework for PGD at least?



3 Unification under KL Framework

Definition 7 (KL Exponent). Suppose that the problem (P) has a nonempty solution set and a finite optimal
value. We say F(x) is a KL function with the exponent 6 € (0,1] at the point x if we have

0
dist(0, 0F () > \/2p <F(:1:) — max F(a:)) .

Remark 8. As we discussed in the previous lectures, if F(x) is p-strongly convez, then we know F(x) is

a KL function with the exponent 6 = % When the function F(x) is just convez, we know that the function

F(x) is a KL function with the exponent = 1 at all points within a bounded distance from the optimal set,
i.e.,
F(z) — F(z*) < g% (x — x*).

for all g € OF (x). Then, we have
1

[l —a*|

(F(z) — F(z*)) < dist(0, 0F (x)). (3)

3.1 Recover the Convergence Result (Convex)
Assumption 9. The function F : R* — R is level bounded (Coerciveness).

Proof. From Proposition 11 and Proposition 12, we have

F(z*th) — F(zF) < _B%diSt2(O7 OF (zF+1)).

Then, we know the sequence {F(x*)}r<o is monotonically decreasing and F(z*) < F(z°) holds for any
k > 0 from Assumption 9. WLOG, we can assume that

dist(z*, X*) < D,Vk > 0.
Armed with (3), we have

@) F(e¥) < — s (F@) - Fa)?,
which implies
1 k+1
F(zF 1) — F* = 36LD?’
(Deriving by the mathematical induction). We finished the proof. ]

4 Recover the Convergence Result (Strongly Convex)

Proof. From Proposition 11 and Proposition 12, we have

F(wk+1) _ F(wk) <

1 2 k41
< —— .
18Ldlst (0,0F ("))
As F is p-strongly convex, we have
F(a™*h) = F(ah) < — = (F@h*!) - F(a")).

Finally, we get

>~



A general convergence analysis template:
Theorem 10. Suppose that the following conditions hold.
(i) (Sufficient Decrease Property): For any k > 0, we have
F(z"th) — F(a®) < —r 2™ — 2|2,
for some constant k1 > 0. It aims to quantify the algorithmic progress at each step.
(i) (Safequard Condition): For any k > 0, we have
dist (0, OF (x*T1)) < kpljz Tt — ¥,

for some constant ko > 0. It links the relative change produced by the algorithm to the optimality
residual.

(#ii) (Growth Condition):

0
dist(0, 0F (x)) > /2 (F(w) — max F(w)) )
[ASS
which depends solely on the problem and is independent of the algorithm.
Then, we have
F(z®) - F* <O(K 7 1+),
Proof.
F(warl) _ F(:Dk) < _HlekJrl _ wkH2
< —“Ldist?(0, 0F (x" 1))
Ky
< _2‘%;,“ (F(wk"'l) _ F*)29.
)
Define R(z*) := F(x*) — F*. Then, we have
R(z**1) — R(z*) < —aR(z"T1)%,

2
where o := %

2
Case 1: When 6 € (0,1/2), we have
R(iL’k+1) _ R(a?k) S —OéR(wk+1)R<wk+1)20_l.
As 20 — 1 < 0, we have R(x*T1)29-1 > R(x?)29~1. We can get the linear convergence rate.

Case 2: When 0 = 1/2, we trivially get the result.
Case 3: When 6 € (1/2,1], we have:

R(z*) — R(x**1) > aR(z"*+1)?.

Consider the following two cases:
1. If R(z*) < 2R(x**1), we denote ¥(s) = 5752~ and then

R(z") R(x")
WRE) o) = [ s [ s
R(ﬁﬂ))”

> R(z")"?(R(z*) — R(z"™1)) > a ( R(a")



2. If R(z*) > 2R(x**1), we have

1 (20— (20—
B(RE) = p(R@h) = 55— (R~ - R@h)~)
1 — (20— — (20—
> T (R(xk-H) (20—-1) _ (2R(a:k+1)) (26 1))
> 1—2-(0-1 $k+1)7(2071) N 1—2-0(0D al,,0)7(2071)
- 20 — 1 - 20 — 1 '

Combing these two cases, we have

_ 9—(20-1)
P(R(x" ) — p(R(x*)) > min{j’ 1229_211%”0)(2“)} _ Qecl -0

Hence, we have

and

Finally, we have

5 Convergence Analysis of PPA (Nonconvex)

Similar with the analysis of PGD, we only have to check sufficient decrease and safeguard properties.

Proposition 11 (Sufficient Decrease Property). Suppose that F is p-weakly convexr. Let + = prox,p(x)
where t=1 > p. Then, we have

Proof. By definition of the proximal operator, we have
+ 1 2
x’ =argmin | o |ly —z|" + F(y) -
y 2t
Since z* is the optimal solution of the (% — p)-strongly convex optimization problem, we have

3 (1-0)lat —alP < Fah) - Fla),
|

Proposition 12 (Safeguard Condition). Suppose that F is p-weakly convex. Let &+ = prox,p(x) where
t=1 > p. Then, we have

dist(0, 0F () < %||az+ _a.



Proof. Recall that
1
o = argmin {5 Iy~ <l + F(w)}.
, L2t

We drive its optimality condition as
1, . I
0e ;(w —x)+0F (™),
which implies
1
dist(0,0F (7)) < ;Hafr —z|.
Theorem 13 (Nonconvex). Suppose that F is p-weakly conver and t=1 > p. Then, we have

1
'dt&%’“1<0<).
R N N«
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