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My research interests lie in mathematical optimization and its applications in data-driven de-

cision making, machine learning, and data science. My goal is to develop novel theoretical frame-

works to study and analyze the convergence and statistical behaviors of optimization algorithms.

By leveraging these insights from theoretical development, I design efficient algorithms tailored to

data-driven optimization problems in these areas, such as graph learning, finance, experimental

design, etc.

1 Research Overview & Philosophy

Most of my research has contributed to structure-driven algorithm design and the development of

its convergence analysis through error bound theory, see Figure 1 for a broad overview.
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Figure 1: Optimization-centric Research

Now, I will discuss my research pipeline and philosophy, which motivate me to complete these

lines of work.

The explosion of data and computing resources has led to the surge of automatic decision-making

tools and modern machine learning methodologies. This data-driven revolution is underpinned by

ever-evolving research in data-driven modeling and large-scale optimization. At the start of my

PhD study in optimization, I was frequently frustrated by the inefficiency of classic optimization

algorithms, such as gradient descent and subgradient methods, when applied to data-driven struc-

tured optimization problems. I gradually realized that this is the price of their generality, as classic

optimization algorithms are typically designed to work for general problems (e.g., gradient Lipschitz

functions), and thus do not take into account data and modeling structures. To ensure practical

efficiency, I have needed to design optimization algorithms tailored to these particular structures.
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Taking a step further, can we conduct convergence analyses for the proposed algorithms? Oth-

erwise, we cannot make any statements about their worst-case performance. In my view, two

general regularity conditions are essential for establishing sharp convergence rates of optimization

algorithms: smoothness and error bound conditions (e.g., quantifying the perturbation quan-

tity of the neighborhood around the optimal solution). Smoothness condition for a given problem

is usually easy to verify, as intuitively it corresponds to whether gradient information is available.

However, error bound analysis is typically treated to be independent of algorithm design, which

makes algorithm design and convergence analysis two separate tasks. This can lead to subopti-

mal rates. Therefore, there is no theoretical guideline for designing optimization algorithms with

strong performance guarantees. To bridge this gap, my research is committed to incorporating

error bound analysis with algorithm design, so that convergence analysis and algorithm design can

reinforce each other.

Later, when I started my postdoctoral study with Prof. Jose Blanchet at Stanford, I expanded

my research area to data-driven stochastic modeling. This collaboration inspired me to rethink my

research goals. I realized that the regularity conditions used to conduct convergence analysis of

optimization algorithms can also provide strong practical guidelines and insights on how to design

computationally amenable data-driven optimization models. All in all, past research experience

and understanding on optimization and data-driven modeling have gradually formed my research

pipeline as follows:
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Figure 2: My Research Pipeline

2 Summary of Past and Ongoing Research

In this section, I will provide a detailed introduction to five lines of work illustrated in Figure 1,

demonstrating the effectiveness of my research pipeline.

2.1 Nonconvex-Nonconcave Minimax Optimization

Nonconvex-nonconcave minimax optimization has attracted significant attention in machine learn-

ing and data science, particularly due to its close relation to robust training of neural networks

and generative adversarial networks (GANs). My keen interest in this topic dates back to my PhD

studies, when I began a line of research projects on designing efficient first-order algorithms for

distributionally robust optimization (DRO) problems [LHS19, LCS23, LCS20, Li21]. In general, all

DRO models can be formulated as minimax games, where a decision-maker (primal) engages in a

game against a fictitious adversary (dual) to analyze the potential consequences of the worst-case

attack.

The key to minimax optimization is balancing between the primal and dual updates. The

optimality of this balance directly impacts the convergence rate. In my recent work [LZS23], I
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introduce a new concept called the primal-dual error bound, which characterizes “the degree” of

this balance using tailored error bound theory. This fresh perspective provides a new algorithm

design principle: optimal primal-dual balancing. That is, we should pay more attention to the player

with the worse growth condition. The best convergence rate we can obtain is determined by the

slower of the primal and dual updates. Moreover, this primal-dual error bound serves as a milestone

for developing a unified convergence analysis framework for a broad class of nonconvex-nonconcave

minimax optimization problems, culminating in the first universally applicable algorithm.

I believe that my works [LZS23, ZZS+23] make significant contributions to the minimax opti-

mization literature. Before these works, the development of minimax optimization algorithms and

their convergence analyses was still in its infancy stage. I summarize three major breakthroughs:

1. My works identify checkable regularity conditions for the largest class of nonsmooth nonconvex-

nonconcave optimization problems with optimal convergence rates. Existing optimal methods

only apply to smooth problems with gradient information [LSM20] or rely on other uncheck-

able conditions.

2. My works propose the first universally applicable algorithm for minimax optimization. This

universality is crucial in practice as we often do not know which player has better properties,

such as convexity or concavity.

3. My works also establish the first algorithm-independent quantitative relationships between

!-game stationarity and !-optimization stationarity concepts for any ! ∈ (0, 1). These results

demystify various notions of stationarity in the context of minimax optimization.

2.2 Optimization in Probability Space

Optimization of infinite-dimensional functionals of probability measures naturally arises in a wide

range of problems, such as GANs, sequential decision making, and optimal control. In my recent

work [BGKL23], a key observation is that we can leverage both Wasserstein geometry and the

strong duality results recently developed in DRO to execute the gradient step in probability space.

It turns out that the developed modified Frank-Wolfe step (gradient step) in probability space

can be reduced to finite-dimensional convex optimization problems, leading to the first practically

implementable algorithm to optimize the probability measure in the literature. On the theoretical

side, our work gives the first non-asymptotic convergence rate under error bound type conditions,

which matches the analogous results of finite-dimensional optimization problems in Euclidean ge-

ometry with similar regularity conditions. Later on, my collaborators and I extended [BGKL23] to

weak the smoothness assumption by exploiting Bregman geometry [BLT23].

2.3 Fast First-Order Algorithms for DRO

As I mentioned, the first line of my research aims to realize the benefits of DRO in practice.

Many distributionally robust learning models (e.g., logistic regression, support vector machine)

can be equivalently reformulated as tractable conic programs when the loss function is convex.

These conic programs can then be solved by general-purpose off-the-shelf solvers, such as MOSEK

and Gurobi. However, these general-purpose solvers do not scale well to large problems and can be

slow in practice, as they do not exploit any useful latent structures in the problem.

To resolve this issue, my research has developed a first-order algorithmic framework to efficiently

solve a class of distributionally robust generalized linear classification models [LHS19, LCS23,
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LCS20, Li21]. The key novelty of my work is the careful identification and exploitation of useful

latent structures in the problem. This results in the first practical algorithm to achieve faster

convergence rates in theory and practice. Indeed, our wall-clock time is up to 1000+ times faster

than the standard off-the-shelf solver, with the performance gap growing with problem size.

2.4 A Unified Approach for DRO

During my PhD study, as an optimization researcher, I typically overlooked modeling design and

statistical properties of data-driven optimization problems, since my only objective was to achieve

the global optimum or stationary point of a fixed problem more quickly. However, after I started

my Postdoc study, I was inspired to use my mathematical optimization expertise to develop new

data-driven optimization models with computational tractability in mind.

My recent work [BKLT23] introduces a novel approach that unifies most of existing DRO models

into a single framework using optimal transport (OT) with martingale constraints, while maintain-

ing computational tractability. Moreover, this approach allows us to incorporate distributional

uncertainty sets to address misspecification for both likelihoods and actual outcomes. Also, we find

out that the incorporation of martingale constraints in conventional DRO models has far-reaching

implications in the supervise learning [LLBN22] and dynamic learning setting [LBBL23].

2.5 Gromov Wasserstein for Graph Learning

A significant portion of my research involves close collaboration and discussion with researchers in

applied areas such as graph learning [LTK+23a, LTK+23b, KLJS23, TLGL22, SLS22], NLP [TZL+23],

finance [BLPZ23] and experimental design [LLYB23]. In this process, I use my research experience

in optimization to solve real-world problems.

Below, I will use my line of research on the Gromov-Wasserstein (GW) distance for graph

learning to highlight this research experience. The GW distance provides a flexible way to compare

and couple probability distributions supported on different metric spaces. It has been applied

to various structural data analysis tasks, such as cross-lingual knowledge graph (KG) alignment

in NLP for machine translation, social network analysis, and shape correspondence in computer

graphics.

My recent work [LTK+23a] provides the first provable single-loop algorithm — BAPG for ap-

proximately computing the Gromov-Wasserstein (GW) distance, which achieves state-of-the-art

(SOTA) performance in various tasks, including graph alignment and partition. Inspired by er-

ror bound condition satisfied by GW problem, I introduce a novel relaxation technique to bal-

ance accuracy and computational efficiency. BAPG will be included in the POT: Python Optimal

Transport soon. Based on [LTK+23a], my coauthors and I developed an unsupervised graph

alignment framework that jointly performs structure learning and GW-based graph alignment.

This method achieves SOTA performance on the DBP15K KG alignment benchmark dataset1. We

also fully investigated a robust version of the GW distance to account for outliers in real-world ap-

plications [KLJS23], which achieves SOTA performance on several social network analysis datasets,

including Douban Online-Offline.

1DBP15k contains four language-specific KGs that are respectively extracted from English, Chinese, French and

Japanese, which is the most popular dataset for the evaluation of entity alignment tasks.
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3 Future Research Agenda

My long-term research goal is to make far-reaching impacts in both theory and practice. Building on

the research pipeline I introduced in the first section, the research direction I would like to expand is

to consider both smoothness and error bound conditions of optimization problems into data-driven

modeling design. This direction has become increasingly pressing and relevant to practitioners as

more structured data-driven decision-making models emerge.

To be specific, what I have discovered to be both challenging and intriguing in this field is to

balance computational effectiveness and statistical efficiency across various optimization algorithms

and statistical (data-driven) models. Optimizers typically focus on developing effective algorithms

for a specific abstract optimization problem at hand. By contrast, as statisticians often prioritize

the statistical properties of the global optimal solution, the resulting optimization problem may lack

certain desirable properties such as smoothness and error bound conditions. Consequently, existing

iterative methods may face challenges such as slow convergence rates and heavy computational

burden. My work will offer a comprehensive perspective and answer on how to optimally close this

gap for different data-driven decision-making problems.

Additionally, as an optimizer, a natural direction to further explore is general coupled nonconvex-

nonconcave minimax optimization problems, which can cover a lot of operation management and

machine learning problems, such as mechanism design, inventory sharing, meta learning, game

theory, etc. A long-standing open problem is to find the largest problem class for which we can

develop a universally applicable first-order algorithm to achieve the polynomial rate to any types

of stationary points. Besides that, I am also keenly interested in demystifying the different station-

ary concepts. On the practical side, my long-term goal is to produce an open-source optimization

package for minimax optimization problems, which could have a high impact among operations

research, machine learning, and data science communities.

With my rich experience in both optimization and data-driven decision making, I am the right

person to pursue them.
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