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Empirical Risk Minimization

● Training dataset: {Xi}
N
i=1 i.i.d. drawn from P⋆;

● As the true distribution P⋆ is typically not known, one
considers the empirical risk minimization (ERM) problem

inf
β
{EX∼P̂[ℓ(fβ(X))] =

1

N

N

∑
i=1

ℓ(fβ(Xi))} ,

where

P̂ ∶=
1

N

N

∑
i=1

δXi

is the empirical distribution associated with the training
dataset.
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Overfitting and Regularization

● A well-known issue with ERM is overfitting.

● A standard approach to deal with this is regularization:

min
β
{EX∼P̂[ℓ(fβ(X))] +R(fβ)} .

● Distributionally robust optimization (DRO) — a fresh and
principled perspective on regularization [Shafieezadeh-Abadeh
et al.(2019), Gao et al. (2022)].
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Optimal Transport-based DRO Formulation

● We consider minimizing the worst-case expected loss

inf
β

sup
Q∈Bρ(P̂)

EX∼Q[ℓ(fβ(X))], (OT-DRO)

where Bρ(P̂), the so-called ambiguity set, is defined as

Bρ(P̂) = {Q ∶D(Q, P̂) ≤ ρ}.

Here D(Q, P̂) is the optimal transport distance between Q
and P̂ with the quadratic cost.

● The average size perturbation among all empirical data is less
than a given budget.
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Main Focus

Individual Perturbation

Impose additional martingale constraints!

BM
ρ (P̂) = {Q ∶D(Q, P̂) ≤ ρ} ∩ {Q:EQ∣P̂[X̄ ∣X] =X}
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Motivation Question

Why the martingale constraint makes sense as a
regularization techinique?
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Martingale Constraints

● Combat the overconverativeness issue of the OT-DRO;

● The conditional expectation of the additive perturbation for
each data point (individually) equals to zero.

● E[X̄ ∣X] =X ⇐⇒ The distribution of X̄ dominate X in
convex order [Strassen et al.(1965)].

● The adversary X̄ will have high dispersion than empirical data
in non-parametric sense.

● Well-motivated in robust mathematical finance, e.g.,
martingale optimal transport ⋯
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A Motivation Example: Linear Regression

inf
β

sup
Q∈BM

ρ (P̂)
EX∼Q[ℓ(fβ(X))], (Exact Martingale DRO)

● Exact martingale based ambiguity set:

BM
ρ (P̂) = {Q ∶D(Q, P̂) ≤ ρ} ∩ {Q ∶ EQ∣P̂[X̄ ∣X] =X}

● Family of linear functions X → fβ(X) ∶= β
TX;

● ℓ(⋅) = ∥ ⋅ ∥2 is a quadratic loss;

Theorem

The exact Martingale DRO model is exactly equivalent to ridge
regression with Tikhonov regularization, i.e.,

min
β

EP̂[ℓ(β
TX)] + ρ∥β∥22.
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A Motivating Example: Linear Regression

● Exact Martingle DRO is equivalent to ridge regression,

min
β

EP̂[ℓ(β
TX)] + ρ∥β∥22 (Exact Martingale DRO)

● The conventional OT-DRO is equivalent to the square-root
regression problem [Blanchet et al. (2019)], i.e.,

min
β
(

√

EP̂[ℓ(β
TX)] +

√
ρ∥β∥2)

2

(OT-DRO)

Introducing an additional power in norm regularization
123⇐⇒ 123

Adding martingale constraints in the perturbations
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Interpolation?

Can we interpolate between the OT-DRO and Martingale
DRO models, and produce new regularization techniques?
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Perturbed Martingale DRO

We focus on

inf
β

sup
Q∈BM,ϵ

ρ (P̂)
EX∼Q[ℓ(fβ(X))], (Martingale DRO)

where BM,ϵ
ρ (P̂) is perturbed martingale based ambiguity set, i.e.,

BM,ϵ
ρ (P̂) = {Q ∶D(Q, P̂) ≤ ρ} ∩ {Q ∶ ∥EQ∣P̂[X̄ ∣X] −X∥2 ≤ ϵ} .

● When ϵ is small (cf. ϵ2 ≤ ρ), Martingale DRO will reduce to
the well-known Jacobian/input gradient regularization.
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A New Principled Adversarial Training Procedure

● By strong duality theorem developed in our paper,
Martingale DRO is identical to

inf
λ≥0,α,β

λρ+
ϵ

N

N

∑
i=1
∥αi∥+

1

N

N

∑
i=1

sup
∆i

[ℓ(fβ(Xi +∆i)) − α
⊺
i∆i − λ∥∆i∥

2] .

● Regarding the dual variable λ as a constant [Sinha et al.
(2018)], we have

min
β

1

N

N

∑
i=1

max
∥∆i∥≤ϵ

[ℓ(fβ(Xi +∆i)) − λ∥∆i∥
2] .

● Can be addressed by SGD efficiently (only change 3 lines of
Pytorch code)! 1

1https://github.com/duchi-lab/certifiable-distributional-robustness
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Toy Example for Binary Classification
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Deep Neural Network for Adversarial Training

MINIST Dataset:
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Deep Neural Network for Adversarial Training
The largest DRO perturbation such that each model makes correct
prediction:

0 Predict 2 Predict 0 Predict 9 Predict 8

1 Predict 2 Predict 1 Predict 8 Predict 8

2 Predict 2 Predict 2 Predict 2 Predict 2

3 Predict 8 Predict 8 Predict 8 Predict 8

4 Predict 6 Predict 4 Predict 9 Predict 4

8 Predict 8 Predict 8 Predict 8 Predict 8

9 Predict 8 Predict 9 Predict 9 Predict 9

Original ERM Jacobian Regularization DRO Martingale DRO

Perturbations on a test datapoint

(a) Original

0 Predict 2 Predict 0 Predict 9 Predict 8

1 Predict 2 Predict 1 Predict 8 Predict 8

2 Predict 2 Predict 2 Predict 2 Predict 2

3 Predict 8 Predict 8 Predict 8 Predict 8

4 Predict 6 Predict 4 Predict 9 Predict 4

8 Predict 8 Predict 8 Predict 8 Predict 8

9 Predict 8 Predict 9 Predict 9 Predict 9

Original ERM Jacobian Regularization DRO Martingale DRO

Perturbations on a test datapoint

(b) ERM

0 Predict 2 Predict 0 Predict 9 Predict 8

1 Predict 2 Predict 1 Predict 8 Predict 8

2 Predict 2 Predict 2 Predict 2 Predict 2

3 Predict 8 Predict 8 Predict 8 Predict 8

4 Predict 6 Predict 4 Predict 9 Predict 4

8 Predict 8 Predict 8 Predict 8 Predict 8

9 Predict 8 Predict 9 Predict 9 Predict 9

Original ERM Jacobian Regularization DRO Martingale DRO

Perturbations on a test datapoint

(c) Jacobian
Regularization

0 Predict 2 Predict 0 Predict 9 Predict 8

1 Predict 2 Predict 1 Predict 8 Predict 8

2 Predict 2 Predict 2 Predict 2 Predict 2

3 Predict 8 Predict 8 Predict 8 Predict 8

4 Predict 6 Predict 4 Predict 9 Predict 4

8 Predict 8 Predict 8 Predict 8 Predict 8

9 Predict 8 Predict 9 Predict 9 Predict 9

Original ERM Jacobian Regularization DRO Martingale DRO

Perturbations on a test datapoint

(d) DRO

0 Predict 2 Predict 0 Predict 9 Predict 8

1 Predict 2 Predict 1 Predict 8 Predict 8

2 Predict 2 Predict 2 Predict 2 Predict 2

3 Predict 8 Predict 8 Predict 8 Predict 8

4 Predict 6 Predict 4 Predict 9 Predict 4

8 Predict 8 Predict 8 Predict 8 Predict 8

9 Predict 8 Predict 9 Predict 9 Predict 9

Original ERM Jacobian Regularization DRO Martingale DRO

Perturbations on a test datapoint

(e) Martingale
DRO
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Summary

● Tikhonov regularization is distributionally robust in a
non-paramteric sense when exact martingale constraints are
imposed to the conventional DRO model.

● The interpolation between the conventional OT-DRO and the
exact martingale DRO models (Perturbed Martingale DRO)
can result in a novel and effective set of regularizer techniques.
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Thank you! Questions?
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