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SAA Often Fails
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 Adversarial Attack

 Overfitting



Model Misspecification

5

What makes sense for 
choosing the set ℬ?



Ambiguity Set
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 A set of distribution around the baseline distribution    :

How to choose the 
“discrepancy” 𝐷𝐷(⋅,⋅)?

Desirable Properties:
 Non-parametric
 Tractable
 Explainable



How to Choose Probability Metric?
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Two natural ways to model changes 
in distributions.

A) Our model gets the likelihood of 
outcomes wrong.

B) Our model gets the outcomes 
wrong.

Traditionally A) and B) are seen as 
separate mechanisms.

Approach A) Divergence:   Dupuis, James & Peterson '00; 
Hansen & Sargent '01, '08; Nilim & El Ghaoui '02, '03; 
Iyengar '05; A. Ben-Tal, L. El Ghaoui, & A. Nemirovski '09; 
Bertsimas & Sim '04; Bertsimas, Brown, Caramanis '13; Lim 
& Shanthikumar '04; Lam '13, '17; Csiszár & Breuer '13; 
Jiang & Guan '12; Hu & Hong '13; Wang, Glynn & Ye '14; 
Bayrakskan & Love '15; Duchi, Glynn & Namkoong '16; 
Bertsimas, Gupta & Kallus ’13, (LD-) Van Bary et al. ‘17

Approach B) Wasserstein: Scarf '58; Hampel '73; Huber 
'81; Pflug & Wozabal '07; Mehrotra & Zhang '14; Esfahani 
& Kuhn '15; Blanchet & Murthy '16; Gao & Kleywegt '16; 
Duchi & Namkoong 17’, (Sinkhorn-) Wang et al. ’21.
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Can we address model misspecification in terms 
of both likelihoods and actual outcomes?

Why is this important?



Why is this important?
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A unified theory of DRO will position the area well to 
address a key question…

How to practically choose the distributional 
uncertainty set?

Even experts see these DRO models as fundamentally 
different – in some sense, they are not…
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A Unified View of DRO via Optimal Transport 
Approach with Conditional Moment Constraints



What is Optimal Transport?
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Transportation cost function

Linear programming problem (“Monge-
Kantorovich”)

[Villani (2003)]



Unifying Formulation
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 OT-DRO with conditional moment constraints 

Lifting Technique!



Unifying Formulation
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 OT-DRO with conditional moment constraints 

Lifting Technique!
If G is a trivial sigma field, then
 



Unifying Formulation
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 OT-DRO with conditional moment constraints 

Lifting Technique!
If G is the smallest sigma field generated by 
hat V, then
 



Unifying Formulation
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 OT-DRO with conditional moment constraints 



Unifying Formulation
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 OT-DRO with “Martingale” Constraint

This is the “baseline model” which is constrained to be   .
                



We Recover Most DRO Formulations
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Pick cost functions & reference measure
  Recover       Most DRO Formulations!



Wasserstein DRO
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𝜁𝜁 = 1,𝜋𝜋-a.s!

Automatically satisfied



𝝓𝝓-divergence [Csiszar, 1963,1967]
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For two probability measures                                   , we let 𝜌𝜌 be a dominating 
measure of                  (i.e.,                                    ). Then, the 𝜙𝜙 divergence between                                                      
I                is defined, independently of 𝜌𝜌, by 

where 

The speed of growth of 𝜙𝜙 at infty.  
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The speed of growth of 𝜙𝜙 at infty.  

Fact 1 (Decomposition) 



𝝓𝝓-divergence [Csiszar, 1963,1967]
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For two probability measures                                   , we let 𝜌𝜌 be a dominating 
measure of                  (i.e.,                                    ). Then, the 𝜙𝜙 divergence between                                                      
I                is defined, independently of 𝜌𝜌, by 

where 

The speed of growth of 𝜙𝜙 at infty.  

Example 1 (Kullback–Leibler divergence) 



𝝓𝝓-divergence [Csiszar, 1963,1967]
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For two probability measures                                   , we let 𝜌𝜌 be a dominating 
measure of                  (i.e.,                                    ). Then, the 𝜙𝜙 divergence between                                                      
I                is defined, independently of 𝜌𝜌, by 

where 

The speed of growth of 𝜙𝜙 at infty.  

Fact 2 (Asymmetry)  

where                           represents the Cisizar dual of   



𝝓𝝓-divergence DRO [𝝓𝝓∞
′ = ∞]
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Likelihood ratio 𝜻𝜻

𝜙𝜙(1) = 0 !



𝝓𝝓-divergence DRO [𝝓𝝓∞
′ < ∞]
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Fact : Suppose that Ω is compact, the worst-case distribution will be 
supported on N+1 point, i.e.,                               .

�̂�𝜈 𝑑𝑑𝜉𝜉′,𝑑𝑑𝜁𝜁′ =
1 − 𝜖𝜖
𝑛𝑛 �

𝑖𝑖

𝛿𝛿(𝜉𝜉𝑖𝑖
′,1−𝜖𝜖) + 𝜖𝜖𝛿𝛿(𝜉𝜉𝑛𝑛+1′ ,0)



𝝓𝝓-divergence DRO [𝝓𝝓∞
′ < ∞]
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�̂�𝜈 𝑑𝑑𝜉𝜉′,𝑑𝑑𝜁𝜁′ =
1 − 𝜖𝜖
𝑛𝑛 �

𝑖𝑖

𝛿𝛿(𝜉𝜉𝑖𝑖
′,1−𝜖𝜖) + 𝜖𝜖𝛿𝛿(𝜉𝜉𝑛𝑛+1′ ,0)



𝝓𝝓-divergence DRO
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Sinkhorn DRO  
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Normal distribution

 Entropic regularization (Sinkhorn Distance) is popular in Optimal Transport 
applications in AI [Cuturi. (2013), Peyré & Cuturi. 2017]

 This motivated Wang et al. (2021) to consider the formulation:

How to recover this
formulation?



Sinkhorn DRO 
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Again lift the outcome 
space to Ω × Ω × 𝑅𝑅+!

Normal distribution



Sinkhorn DRO -> KL-DRO 
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Following Wang et al. (2021) ,  we define the kernel distribution as 

and the new reference measure as: 
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What about new – more powerful 
formulations?



New DRO Model
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 The adversary has the ability to modify both the actual outcomes 
and the associated probability.

𝛾𝛾1 = ∞, KL-DRO



New DRO Model
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  The adversary has the ability to modify both the actual outcomes 
and the associated probability.

𝛾𝛾2 = ∞, Wasserstein DRO



Reformulation Result 
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Theorem. (P) is equivalent to

where                                                and the c-transform of         with 
penalty           is defined as 



Reformulation Result 
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Theorem. (P) is equivalent to

where                                                and the c-transform of         with 
penalty           is defined as 

𝛾𝛾1 and 𝛾𝛾2 play a critical role in controlling the LIKELIHOOD ERROR hedge 
vs OUTCOME ERROR hedge  AND STILL TRACTABLE! 



Optimal Transport Plan
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Structure of the worst case 𝜋𝜋⋆: It must be concentrated on:

Where 𝛼𝛼⋆  is the dual variable of                    .

Perturbation on actual outcomes!

Perturbation on data weights!



Tractability 
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Theorem 2. Suppose that the loss function          is a pointwise 
maximum of concave functions and , (P) can be 
reformulated as a finite convex program.
 

Mosek & Gurobi help!Can approximate any convex function as the maxima
of affine functions…



Support Vector Machine
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Binary Classification Problem

Cost function 

Loss function

Hyperparameter: 

Dimension = 2



Worst-Case Distribution Visualization
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Outcome Perturbation!



Worst-Case Distribution Visualization
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Likelihood Perturbation!



Reference:
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1. Jose Blanchet*, Daniel Kuhn*, Jiajin Li*, Bahar Tahksen* (Alphabetical order). Unifying 
Distributionally Robust Optimization via Optimal Transport Theory. Working Paper.

2. Jiajin Li, Sirui Lin, Jose Blanchet, Viet Anh Nguyen. Tikhonov Regularization is Optimal 
Transport Robust under Martingale Constraints, Neural Information Processing Systems 
(NeurIPS), 2022.

Thank you! Q&A?



Strong Duality Theorem
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If the reference measure    is discrete, we have
 

Jiajin Li, Sirui Lin, Jose Blanchet, Viet Anh Nguyen. Tikhonov Regularization is Optimal Transport Robust under 
Martingale Constraints, Neural Information Processing Systems (NeurIPS), 2022.



Worst-Case Distribution Visualization
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Outcome Perturbation!



Worst-Case Distribution Visualization
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Likelihood Perturbation!
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