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Main Question:

How to evaluate the stability of a learning model w.r.t
perturbation of the observed dataset?
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Type I: Data Corruptions

LLM Jailbreak 1

1Figure from https://jailbreak-llms.xinyueshen.me
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Type I: Data Corruptions

Paycheck Protection Program (PPP) Fraud2

2From https://www.justice.gov/opa/pr/ten-individuals-charged-950000-
covid-19-relief-fraud-schemes
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Type II: Sub-population Shifts

Even for carefully-designed randomized trials, there is large
selection bias3!

3Tipton et al. The Convenience of Large Urban School Districts: A Study of
Recruitment Practices in 37 Randomized Trials.
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Type II: Sub-population Shifts

AI Systems
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Stability Evaluation

Problem: How do we evaluate the stability of a learning model
when subjected to data perturbations?

Two types of data perturbations:

• Data corruptions: changes in the distribution support (i.e.,
observed data samples).

• Sub-population shifts: perturbation on the probability
density or mass function while keeping the same support.
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Optimal Transport with Lifting Techniques

Key Idea: From the original sample space Z to the joint (sample,
density) space (Z,W ).
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Optimal Transport with Lifting Techniques

Key Idea: From the original sample space Z to the joint (sample,
density) space (Z,W ).

Definition (OT discrepancy with moment constraints)

The OT discrepancy with moment constraints induced by c, Q and
P is the function Mc : P(Z ×W)2 → R+ defined through

Mc(Q,P) =






inf Eπ[c((Z,W ), (Ẑ, Ŵ ))]
s.t. π ∈ P((Z ×W)2)

π(Z,W ) = Q, π(Ẑ,Ŵ ) = P
Eπ[W ] = 1 π-a.s,

where π(Z,W ) and π(Ẑ,Ŵ ) are the marginal distributions of (Z,W )

and (Ẑ, Ŵ ) under π.
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How to choose the cost function?

Key Idea: From the original sample space Z to the joint (sample,
density) space (Z,W ).

We construct the cost function as

c((z, w), (ẑ, ŵ))

= θ1 · w · (x− x̂22 +∞ · |y − ŷ|)  
differences between samples

+ θ2 · (φ(w)− φ(ŵ))+.  
differences in probability mass

where 1
θ1

+ 1
θ2

= 1.
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How to choose the cost function?

Key Idea: From the original sample space Z to the joint (sample,
density) space (Z,W ).

We construct the cost function as

c((z, w), (ẑ, ŵ))

= θ1 · w · (x− x̂22 +∞ · |y − ŷ|)  
differences between samples

+ θ2 · (φ(w)− φ(ŵ))+.  
differences in probability mass

where 1
θ1

+ 1
θ2

= 1.

• When θ1 = +∞, it reduces to φ-divergence.

• When θ2 = +∞, it reduces to the vanilla optimal transport
distance.

Jose Blanchet, Daniel Kuhn, Jiajin Li, Bahar Taskesen ”Unifying distributionally

robust optimization via optimal transport theory” arXiv:2308.05414
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Proposed Stability Metric

Given a learning model fβ and the distribution P0 ∈ P(Z), we
formally introduce the OT-based stability evaluation criterion as

R(β, r) =


inf

Q∈P(Z×W)
Mc(Q, P̂)

s.t. EQ[W · ℓ(β, Z)] ≥ r.
(P)

Some notations:

• P̂: The reference measure selected as P0 ⊗ δ1, with δ1
denoting the Dirac delta function.

• ℓ(β, z): The prediction risk of model fβ on sample z.

• r > 0: the pre-defined risk threshold.

Larger R(β, r) ⇒ More Stable
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Geometric Illustrations

Insight: Projection distance to the distribution set where the
model performance falls below a specific threshold.
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Figure 1: Data distribution projection in the joint (sample, density)
space.
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Strong Duality

Theorem (Strong duality for problem (P))

Suppose that (i) The set Z ×W is compacta, (ii) ℓ(β, ·) is upper
semi-continuous for all β, (iii) the cost function
c : (Z ×W)2 → R+ is continuous; and (iv) the risk level r is less
than the worst-case value r̄ := maxz∈Z ℓ(β, z). Then we have,

R(β, r) = sup
h∈R+,α∈R

hr + α+ EP̂


ℓ̃α,hc (β, (Ẑ, Ŵ ))


(D)

where the surrogate function ℓ̃α,hc (β, (ẑ, ŵ)) equals to

min
(z,w)∈Z×W

c((z, w), (ẑ, ŵ)) + αw − h · w · ℓ(β, z),

for all ẑ ∈ Z and ŵ ∈ W.

aWhen the reference measure P0 is a discrete measure, some technical
conditions (e.g., compactness, (semi)-continuity) can be eliminated.
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Dual Reformulation

Theorem (Dual reformulations)

Suppose that W = R+. (i) If φ(t) = t log t− t+ 1, then the dual
problem (D) admits:

sup
h≥0

hr − θ2 logEP0


exp


ℓh,θ1(Ẑ)

θ2


; (1)

(ii) If φ(t) = (t− 1)2, then the dual problem (D) admits:

sup
h≥0,α∈R

hr + α+ θ2 − θ2EP0





ℓh,θ1(Ẑ) + α

2θ2
+ 1

2

+



 , (2)

where the d-transform of h · ℓ(β, ·) with the step size θ1 is defined
as

ℓh,θ1(ẑ) := max
z∈Z

h · ℓ(β, z)− θ1 · d(z, ẑ).
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Visualizations on toy examples

Visualize the most sensitive distribution Q:

Figure 2: Visualizations on toy examples with 0/1 loss function under
different θ1, θ2. The original prediction error rate is 1%, and the error
rate threshold r is set to 30%. The size of each point is proportional to
its sample weight in Q
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Model Stability Analysis

Task: Predict individual’s income based on personal features.

Methods under evaluation:

• Empirical Risk Minimization (ERM)

• Adversarial Training (AT): designed for robustness to data
corruptions

• Tilted ERM: designed for robustness to sub-population shifts
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Model Stability Analysis

Insight: A method designed for one class of data perturbation may
not be robust against another.

• AT is not stable under sub-population shifts.

• Tilted ERM is not stable under data corruptions.
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Feature Stability Analysis

Feature Stability:

• perturbing on which feature will cause model’s performance
drop

• providing more fine-grained diagnosis for a prediction model

For i-th feature, we can choose the cost function as:

c((z, w), (ẑ, ŵ))

= θ1 · w · (z(i) − ẑ(i)22 +∞ · z(,−i) − ẑ(,−i)22)  
only allow perturbations on i-th feature

+θ2 · (φ(w)− φ(ŵ))+.
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Feature Stability Analysis

Task: Predict individual’s income based on personal features
Dataset: ACS Income

1: RACE: Indian

2: RELP: Adopted Son

3: OCCP: Chefs and Cooks

4: RELP: Grandchild

5: RELP: Institutionalized

MLP
Acc: 82%
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5: RELP: Grandchild
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Insight: ERM model focuses too much on the “American Indian”
feature, which may introduce potential fairness problem!
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Feature Stability Analysis

Task: Predict whether an individual has public health
insurance
Dataset: ACS Public Coverage

1: CIT: Abroad

2: CIT: PR

3: RACE: Indian

4: CIT: Citizen

5: SCHL: Postgrad

MLP
Acc: 71%
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5: RELP: Widowed

LR
Acc: 67%
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Insight: Accuracy can also pay-off for complicated models in
terms of stability ⇒ Occam’s Razor Principle.
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“Targeted” Algorithmic Intervention

Insight: Feature stability can motivate refined algorithmic
intervention.

• Idea: we can only perturb the identified sensitive racial feature
“American Indian”.

• It significantly increase the worst racial group accuracy.
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Conclusion

• Optimal transport is powerful enough to consider the data
corruption and subpopulation shift simultaneously via the
lifting.

• Projection distance in the probability space is able to
quantify the stability of a learning model w.r.t the dataset.

• More modern learning models: LLMs, Reward models in
RLHF, ...

Jose Blanchet, Peng Cui, Jiajin Li, Jiashuo Liu ”Stability Evaluation through

Distributional Perturbation Analysis”, ICML 2024.
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