Frank-Wolfe in Probability Space

Connection with Distributionlly Robust Optimization

Jiajin Li

Department of Management Science and Engineering Stanford University

Erice, May 2022

Joint work with Carson Kent, Jose Blanchet and Peter Glynn.

Main Story: We propose Frank-Wolfe-type algorithms to well-address $\min_{\mu\in\mathcal{P}_2(\mathbb{R}^d)} J(\mu) \qquad (1)$ where $\mathcal{P}_2(\mathbb{R}^d)$ is the space of probability measures on \mathbb{R}^d with a finite second moment.

Problem (1) is rich and gives rise to a wide range of contemporary applications (Chu, Blanchet and Gylnn, 2019).

Trivial Embedding every optimization problem can be written

 $\min_{\theta \in \mathbb{R}^d} f(\theta) = \min_{\mu \in \mathcal{P}(\mathbb{R}^d)} J(\mu).$

where $J(\mu) = \int f(\theta)\mu(d\theta)$ and the optimal solution is supported on the set of optimizers.

Problem (1) is rich and gives rise to a wide range of contemporary applications (Chu, Blanchet and Gylnn, 2019).

 Trivial Embedding: every optimization problem can be written as

$$\min_{\theta \in \mathbb{R}^d} f(\theta) = \min_{\mu \in \mathcal{P}(\mathbb{R}^d)} J(\mu).$$

where $J(\mu) = \int f(\theta)\mu(d\theta)$ and the optimal solution is supported on the set of optimizers.

Barycenter Problems: Let $\lambda_i > 0$ be a set of weights,

 $\min_{\mu}\sum_{i=1}^{m}\lambda_{i}D(\mu,\mu_{i})$

where $D(\mu, \mu_i)$ is a discrepancy between μ and μ_i .

Generative Adversarial Network (Goodfellow et al. 2014): It takes the form of

$$J(\mu) = D(\mu, \mu_n) + R(\mu)$$

for a suitable discrepancy (e.g., Wasserstein, f-divergence) $D(\cdot, \cdot)$ and a regularization term $R(\cdot)$.

Barycenter Problems: Let $\lambda_i > 0$ be a set of weights,

 $\min_{\mu}\sum_{i=1}^{m}\lambda_{i}D(\mu,\mu_{i})$

where $D(\mu, \mu_i)$ is a discrepancy between μ and μ_i .

Generative Adversarial Network (Goodfellow et al. 2014): It takes the form of

$$J(\mu) = D(\mu, \mu_n) + R(\mu)$$

for a suitable discrepancy (e.g., <u>Wasserstein</u>, <u>f-divergence</u>) $D(\cdot, \cdot)$ and a regularization term $R(\cdot)$.

Variational Inference:

$$J(\mu) = \mathsf{KL}(\mu \| \mu_n).$$

- Mean-Field Games: Population risk for two-layer neural network (Mei, Montanari and Nguyen, 2018).
- Reinforcement Learning ...

Variational Inference:

$$J(\mu) = \mathsf{KL}(\mu \| \mu_n).$$

- Mean-Field Games: Population risk for two-layer neural network (Mei, Montanari and Nguyen, 2018).
- Reinforcement Learning

Variational Inference:

$$J(\mu) = \mathsf{KL}(\mu \| \mu_n).$$

- Mean-Field Games: Population risk for two-layer neural network (Mei, Montanari and Nguyen, 2018).
- Reinforcement Learning . . .

Frank-Wolfe from \mathbb{R}^d to $\mathcal{P}_2(\mathbb{R}^d)$

• Assuming that $\mu \in \mathbb{R}^d$ and $J(\cdot)$ is differentiable, we can iteratively solve

$$\min_{\mu \in D} \underbrace{\nabla J(\mu_0)^T(\mu - \mu_0)}_{\text{Directional Derivative } J'(\mu_0; \mu - \mu_0)}$$

where D is a compact convex set.

Extended to probability space, a natural way is to invoke
 Gateaux derivative (i.e, influence function) to act as an analogy.

• Assuming that $\mu \in \mathbb{R}^d$ and $J(\cdot)$ is differentiable, we can iteratively solve

$$\min_{\mu \in D} \underbrace{\nabla J(\mu_0)^T(\mu - \mu_0)}_{\text{Directional Derivative } J'(\mu_0; \mu - \mu_0)}$$

where D is a compact convex set.

Extended to probability space, a natural way is to invoke
 <u>Gateaux derivative</u> (i.e, influence function) to act as an analogy.

Labrard

Gateaux derivative

For $\mu, \nu \in \mathcal{P}_2(\mathbb{R}^d)$, $t \in [0, 1]$ and $(1 - t)\mu + t\nu \in \mathcal{P}_2(\mathbb{R}^d)$ $\lim_{t \to 0} \frac{J(\mu + t(\nu - \mu)) - J(\mu)}{t} = \int DJ_\mu(x)\nu(dx) - \int DJ_\mu(x)\mu(dx)$ $:= \langle DJ_\mu, \nu - \mu \rangle.$

It results in the vanilla Frank-Wolfe extension:

$$\inf_{\mu\in\mathcal{P}_2(\mathcal{R}^d)} \langle DJ_{\mu_0}, \mu-\mu_0 \rangle.$$
 (2)

Modified Frank-Wolfe in $\mathcal{P}_2(\mathbb{R}^d)$

The vanilla Frank-Wolfe (2) may be not well-defined, when the distribution do not have compact support (i.e., DJ_{µ0} may be unbounded). It motivates us to conduct a natural modification:

$$\inf_{\mu\in\mathcal{P}_{2}(\mathcal{R}^{d})\cap\{\mu:W(\mu,\mu_{0})\leqslant\delta\}}\langle DJ_{\mu_{0}},\mu-\mu_{0}\rangle.$$
(3)

• **2-Wasserstein Distance**: Let $\Pi(\mu, \nu)$ be the class of joint distributions π of random variables (X, Y) such that

$$W^{2}(\mu, \nu) := \min_{\pi} \left\{ \mathbb{E}_{\pi} \left[\|X - Y\|_{2}^{2} \right] : \pi \in \Pi(\mu, \nu), \, \pi_{X} = \mu, \, \pi_{Y} = \nu \right\}.$$

Modified Frank-Wolfe in $\mathcal{P}_2(\mathbb{R}^d)$

The vanilla Frank-Wolfe (2) may be not well-defined, when the distribution do not have compact support (i.e., DJ_{µ0} may be unbounded). It motivates us to conduct a natural modification:

$$\inf_{\mu\in\mathcal{P}_{2}(\mathcal{R}^{d})\cap\{\mu:W(\mu,\mu_{0})\leqslant\delta\}}\langle DJ_{\mu_{0}},\mu-\mu_{0}\rangle.$$
(3)

• 2-Wasserstein Distance: Let $\Pi(\mu, \nu)$ be the class of joint distributions π of random variables (X, Y) such that

$$W^{2}(\mu, \nu) := \min_{\pi} \left\{ \mathbb{E}_{\pi} \left[\|X - Y\|_{2}^{2} \right] : \pi \in \Pi(\mu, \nu), \pi_{X} = \mu, \pi_{Y} = \nu \right\}.$$

Connection with Distributionally Robust Optimization (DRO)

 By the strong duality theorem developed in (Blanchet and Murthy 2019), we have

$$\inf_{\substack{\mu:W(\mu,\mu_0)\leqslant\delta}} \int DJ_{\mu_0}(x)\mu(dx) = \max_{\lambda\geqslant0} \left(E_{\mu_0} \left[\inf_{y} \left[DJ_{\mu_0}(y) + \lambda \|X - y\|_2^2 \right] \right] + \frac{\lambda\delta^2}{2} \right).$$
(4)

Given X ~ μ₀ (i.e., empirical distribution) and λ is fixed,
 Y = arg min_y[DJ_{μ0}(y) + λ||X − y||₂²] can be computed in a parallel fashion over all particles.

 By the strong duality theorem developed in (Blanchet and Murthy 2019), we have

$$\inf_{\substack{\mu:W(\mu,\mu_0)\leqslant\delta}} \int DJ_{\mu_0}(x)\mu(dx)$$

$$= \max_{\lambda\geqslant0} \left(E_{\mu_0} \left[\inf_{y} \left[DJ_{\mu_0}(y) + \lambda \|X - y\|_2^2 \right] \right] + \frac{\lambda\delta^2}{2} \right).$$
(5)

 Our choice of δ will make sure the inner optimization is strongly convex — accelerated gradient descent with linear convergence rate when we assume the <u>L-smoothness</u> of DJ_{μ0}.

 By the strong duality theorem developed in (Blanchet and Murthy 2019), we have

$$\inf_{\substack{\mu:W(\mu,\mu_0)\leqslant\delta}} \int DJ_{\mu_0}(x)\mu(dx) \\ = \max_{\lambda\geqslant0} \left(E_{\mu_0} \left[\inf_{y} \left[DJ_{\mu_0}(y) + \lambda \|X - y\|_2^2 \right] \right] + \frac{\lambda\delta^2}{2} \right).$$
(6)

 \blacktriangleright Uniform strategy for the dual variable $\lambda>0$ or bisection method.

- It avoids a fixed finite dimensional parameterization in favor of sampling based approximations.
- It has strong connections with Wasserstein distributionally robust optimization (DRO).
- It suggests a parallelizable particle based algorithm.

- It avoids a fixed finite dimensional parameterization in favor of sampling based approximations.
- It has strong connections with Wasserstein distributionally robust optimization (DRO).
- It suggests a parallelizable particle based algorithm.

- It avoids a fixed finite dimensional parameterization in favor of sampling based approximations.
- It has strong connections with Wasserstein distributionally robust optimization (DRO).
- It suggests a parallelizable particle based algorithm.

Convergence Analysis

General Descent Lemma in \mathbb{R}^d

• A notion of good first-order approximation, for some $\alpha > 0$,

$$J(\mu) = J(\mu_0) + \nabla J(\mu_0)^T (\mu - \mu_0) + O\left(\|\mu - \mu_0\|^{1+\alpha}\right)$$
(7)

• When $\alpha = 1$, (7) reduce to the standard *L*-smooth condition.

How to make sense the general descent lemma in probability space?

$$J(\mu) = J(\mu_0) + \overline{\left\langle DJ_{\mu_0}, \mu - \mu_0 \right\rangle} + O\left(\left\|\mu - \mu_0\right\|^{1+\alpha}\right)$$

- Planer Geometry (i.e., Gateaux derivative)
- Wasserstein Geometry

General Descent Lemma in $\mathcal{P}_2(\mathbb{R}^d)$

$$J(\mu) = J(\mu_0) + \langle DJ_{\mu_0}, \mu - \mu_0
angle + O\left(\overline{ \mathcal{W}^{1+lpha}(\mu, \mu_0)}
ight)$$

- Planer Geometry (i.e., Gateaux derivative)
- Wasserstein Geometry

How to connect the planer and Wasserstein geometry?

General Descent Lemma in $\mathcal{P}_2(\mathbb{R}^d)$

$$J(\mu) = J(\mu_0) + \langle DJ_{\mu_0}, \mu - \mu_0
angle + O\left(\overline{ \mathcal{W}^{1+lpha}(\mu, \mu_0)}
ight)$$

- Planer Geometry (i.e., Gateaux derivative)
- Wasserstein Geometry

How to connect the planer and Wasserstein geometry?

• A framework allows us to relate the planer geometry and Wasserstein geometry (Luigi, Gigli and Savaré, 2005). That is, the Wasserstein derivative is given by $F_{\mu}(\cdot)$ satisfying

$$\langle DJ_{\mu}, \nu - \mu \rangle = \int F_{\mu}(x)^{T}(y - x)\pi^{*}(dx, dy)$$

where π^* is the optimal coupling between μ and ν .

$$J(\mu) = J(\mu_0) + \int F_{\mu_0}(x)^T (y - x) \pi^*(dx, dy) + O(W^{1+\alpha}(\mu, \mu_0))$$

A framework allows us to relate the planer geometry and Wasserstein geometry (Luigi, Gigli and Savaré, 2005). That is, the Wasserstein derivative is given by $F_{\mu}(\cdot)$ satisfying

$$\langle DJ_{\mu}, \nu - \mu \rangle = \int F_{\mu}(x)^{T}(y - x)\pi^{*}(dx, dy)$$

where π^* is the optimal coupling between μ and ν .

$$J(\mu) = J(\mu_0) + \int F_{\mu_0}(x)^T (y - x) \pi^*(dx, dy) + O(W^{1+\alpha}(\mu, \mu_0))$$

Technical Assumptions

► A1) Suppose that $J(\cdot)$ is <u> α -Wasserstein smooth</u> in the sense that for $\alpha \in (0, 1]$

$$J(\mu) = J(\mu_0) + \int F_{\mu_0}(x)^T (y-x) \pi^*(dx, dy) + O(W^{1+\alpha}(\mu, \mu_0)).$$

- A2) Assume that $DJ_{\mu}(\cdot)$ is *L*-smooth. Here, $F_{\mu_0} = \nabla DJ_{\mu_0}$ (i.e., connect Wasserstein derivative and Gateaux derivative).
- A3) Assume that $J(\cdot)$ satisfies a **PŁ inequality** of the form

$$\tau \cdot \left(J(\mu) - \inf_{\mu} J(\mu) \right)^{\theta} \leq \left\| \nabla D J_{\mu}(x) \right\|_{L_{2}(\mu)}$$

Modified Frank-Wolfe in Probability Space

Technical Assumptions

• A3) Assume that $J(\cdot)$ satisfies a **PŁ inequality** of the form

$$\tau \cdot \left(J(\mu) - \inf_{\mu} J(\mu) \right)^{\theta} \leq \left\| \nabla D J_{\mu}(x) \right\|_{L_{2}(\mu)}.$$

Modified Frank-Wolfe in Probability Space

Technical Assumptions

► A3) Assume that
$$J(\cdot)$$
 satisfies a PŁ inequality of the form
 $\tau \cdot \left(J(\mu) - \inf_{\mu} J(\mu)\right)^{\theta} \leq \|\nabla D J_{\mu}(x)\|_{L_{2}(\mu)}.$

Theorem

Under A1) to A3) choose at the I-th iterate, as long as

$$\left\|\nabla DJ_{\mu_{i-1}}(X)\right\|_{L_2(\mu_{i-1})} > \varepsilon^{\theta}$$

let

 $\delta_{i} = O\left(\min\left\{1/L, \left\|\nabla DJ_{\mu_{i-1}}(X)\right\|_{L_{2}(\mu_{i-1})}^{1/\alpha}\right\}\right).$ Then at most $\widetilde{O}\left(\varepsilon^{-((1+\alpha)\theta/\alpha-1)^{+}/\alpha}\right)$ iterations result in ε error in value function with a sample complexity of order $\widetilde{O}\left(\varepsilon^{-2(1+\alpha)/\alpha}\right)$ of the initial distribution μ_{0} .

Annual Contract

Theorem

At most $\widetilde{O}\left(\varepsilon^{-((1+\alpha)\theta/\alpha-1)^+/\alpha}\right)$ iterations result in ε error in value function with a sample complexity of order $\widetilde{O}\left(\varepsilon^{-2(1+\alpha)/\alpha}\right)$ of the initial distribution μ_0 .

If $J(\cdot)$ is strongly convex and smooth, this recovers $\widetilde{O}(1)$ complexity. If $J(\cdot)$ is convex, this recovers $\widetilde{O}(\varepsilon^{-1})$ complexity. Both of which are canonical results in finite dimensions.

Numerical Results

- Observation Y_i = X_i + Z_i where Z_i is Gaussian Noise and you want to recover the distribution μ (i.e., X_i ~ μ).
- $J(\mu) = D_{\sigma^2}(\mu, \mu_N)$ where D_{σ^2} is so-called entropic regularization of the 2-Wasserstein distance and μ_N is the empirical measure of Y (Rigollet and Weed, 2019).

$$\inf_{\pi_{X}=\mu,\pi_{Y}=\mu_{N}}\frac{1}{2}\int\|x-y\|_{2}^{2}\pi(dx,dy)+\sigma^{2}D_{\mathcal{KL}}(\pi\|\mu\times\mu_{N}).$$
 (8)

Gaussian Deconvolution — 2D Case

Figure: Gaussian Deconvolution 2D

Jiajin Li (Stanford)

Modified Frank-Wolfe in Probability Space

Gaussian Deconvolution — High Dimension

Figure: High-dimensional Gaussian deconvolution for d = 64.

Modified Frank-Wolfe in Probability Space

Jiajin Li (Stanford)

• Let H be a reproducing Kernel Hilbert space and define

$$J(\mu) = \sup_{\|f\|_{H} \leq 1} E_{\mu}f(X) - E_{\mu_{n}}f(X).$$
(9)

- Student-Teacher neural network to parameterize f.
- We compare our method with MMD flow and Kernel Sobolev descent in term of gradient evaluations and same sample size.

Maxmimum Mean Discrepancy

Figure: Student-Teacher Network; The left one is the result for our Frank-Wolfe method with the uniform strategy $\lambda = \frac{0.05}{\delta}$ and the step size δ is 0.5. The number of particle is 200.

- Optimization over probabilities is a powerful concept connecting to many areas, including deep learning, variational inference, deconvolution, etc.
- We presented a modified Frank-Wolfe method which uses both planar geometry (i.e., computation) and Wasserstein geometry (i.e., convergence analysis).
- We obtain results of independent interest for solving worst-case expectations for Wasserstein DRO.

- Optimization over probabilities is a powerful concept connecting to many areas, including deep learning, variational inference, deconvolution, etc.
- We presented a modified Frank-Wolfe method which uses both planar geometry (i.e., computation) and Wasserstein geometry (i.e., convergence analysis).
- We obtain results of independent interest for solving worst-case expectations for Wasserstein DRO.

- Optimization over probabilities is a powerful concept connecting to many areas, including deep learning, variational inference, deconvolution, etc.
- We presented a modified Frank-Wolfe method which uses both planar geometry (i.e., computation) and Wasserstein geometry (i.e., convergence analysis).
- We obtain results of independent interest for solving worst-case expectations for Wasserstein DRO.

Carson Kent, Jiajin Li, Jose Blanchet and Peter Glynn.
 Modified Frank Wolfe in Probability Space. NeurIPS 2021.

Thank you for listening! Q&A?

```
Jiajin Li
jiajinli@stanford.edu
https://gerrili1996.github.io/
```