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Our Focus

Main Story: We propose Frank-Wolfe-type algorithms
to well-address

min
µPP2(Rd )

J(µ) (1)

where P2(R
d) is the space of probability measures on

Rd with a finite second moment.
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Motivation I

Problem (1) is rich and gives rise to a wide range of contemporary
applications (Chu, Blanchet and Gylnn, 2019).

§ Trivial Embedding: every optimization problem can be written
as

min
θPRd

f (θ) = min
µPP(Rd )

J(µ).

where J(µ) =
ş

f (θ)µ(dθ) and the optimal solution is
supported on the set of optimizers.
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Motivation II

§ Barycenter Problems: Let λi ą 0 be a set of weights,

min
µ

m
ÿ

i=1

λiD(µ,µi)

where D(µ,µi) is a discrepancy between µ and µi .

§ Generative Adversarial Network (Goodfellow et al. 2014): It
takes the form of

J(µ) = D(µ,µn) + R(µ)

for a suitable discrepancy (e.g., Wasserstein, f-divergence)
D(¨, ¨) and a regularization term R(¨).
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Motivation III

§ Variational Inference:

J(µ) = KL(µ}µn).

§ Mean-Field Games: Population risk for two-layer neural
network (Mei, Montanari and Nguyen, 2018).

§ Reinforcement Learning . . .
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Frank-Wolfe from Rd to P2(R
d)
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Frank-Wolfe in Rd

§ Assuming that µ P Rd and J(¨) is differentiable, we can
iteratively solve

min
µPD

∇J(µ0)
T (µ ´ µ0)

looooooooomooooooooon

Directional Derivative J 1(µ0;µ ´ µ0)

where D is a compact convex set.

§ Extended to probability space, a natural way is to invoke
Gateaux derivative (i.e, influence function) to act as an analogy.
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Frank-Wolfe in P2(R
d)

Gateaux derivative

For µ,ν P P2(R
d), t P [0, 1] and (1 ´ t)µ+ tν P P2(R

d)

lim
tÑ0

J(µ+ t(ν ´ µ)) ´ J(µ)

t
=

ż

DJµ(x)ν(dx) ´

ż

DJµ(x)µ(dx)

:= xDJµ,ν ´ µy.

It results in the vanilla Frank-Wolfe extension:

inf
µPP2(Rd )

xDJµ0,µ ´ µ0y. (2)
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Modified Frank-Wolfe in P2(R
d)

§ The vanilla Frank-Wolfe (2) may be not well-defined, when the
distribution do not have compact support (i.e., DJµ0 may be
unbounded). It motivates us to conduct a natural modification:

inf
µPP2(Rd )Xtµ:W (µ,µ0)ďδu

xDJµ0,µ ´ µ0y. (3)

§ 2-Wasserstein Distance: Let Π(µ,ν) be the class of joint
distributions π of random variables (X ,Y ) such that

W 2(µ,ν) := min
π

␣

Eπ

[
}X ´ Y }

2
2
]
: π P Π(µ,ν),πX = µ,πY = ν

(

.
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Connection with Distributionally
Robust Optimization (DRO)
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Modified FW Step and DRO

§ By the strong duality theorem developed in (Blanchet and
Murthy 2019), we have

inf
µ:W (µ,µ0)ďδ

ż

DJµ0(x)µ(dx)

=max
λě0

(
Eµ0

[
inf
y

[
DJµ0(y) + λ}X ´ y}

2
2

]]
+

λδ2

2

)
.

(4)

§ Given X „ µ0 (i.e., empirical distribution) and λ is fixed,
Y = argminy [DJµ0(y) + λ}X ´ y}2

2] can be computed in a
parallel fashion over all particles.
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ż

DJµ0(x)µ(dx)
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λě0

(
Eµ0

[
inf
y

[
DJµ0(y) + λ}X ´ y}

2
2

]]
+

λδ2

2

)
.

(5)

§ Our choice of δ will make sure the inner optimization is
strongly convex — accelerated gradient descent with linear
convergence rate when we assume the L-smoothness of DJµ0.
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Modified FW Step and DRO

§ By the strong duality theorem developed in (Blanchet and
Murthy 2019), we have

inf
µ:W (µ,µ0)ďδ

ż
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λě0

(
Eµ0
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inf
y

[
DJµ0(y) + λ}X ´ y}

2
2

]]
+

λδ2

2

)
.

(6)

§ Uniform strategy for the dual variable λ ą 0 or bisection
method.
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Modified FW: Advantages in Probability Space

§ It avoids a fixed finite dimensional parameterization in favor of
sampling based approximations.

§ It has strong connections with Wasserstein distributionally
robust optimization (DRO).

§ It suggests a parallelizable particle based algorithm.
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Convergence Analysis
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General Descent Lemma in Rd

§ A notion of good first-order approximation, for some α ą 0,

J(µ) = J (µ0) +∇J (µ0)
T (µ ´ µ0) +O

(
}µ ´ µ0}

1+α
)

(7)

§ When α = 1, (7) reduce to the standard L-smooth condition.

How to make sense the general descent lemma in probability
space?
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General Descent Lemma in P2(R
d)

J(µ) = J (µ0) + xDJµ0,µ ´ µ0y +O
(

}µ ´ µ0}
1+α

)
§ Planer Geometry (i.e., Gateaux derivative)

§ Wasserstein Geometry
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Wasserstein Differentiability

§ A framework allows us to relate the planer geometry and
Wasserstein geometry (Luigi, Gigli and Savaré, 2005). That is,
the Wasserstein derivative is given by Fµ(¨) satisfying

xDJµ,ν ´ µy =

ż

Fµ(x)
T (y ´ x)π˚(dx , dy)

where π˚ is the optimal coupling between µ and ν.

J(µ) = J (µ0)+

ż

Fµ0(x)
T (y ´ x)π˚(dx , dy)+O

(
W 1+α(µ,µ0)

)
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Technical Assumptions

§ A1) Suppose that J(¨) is α-Wasserstein smooth in the sense
that for α P (0, 1]

J(µ) = J (µ0)+

ż

Fµ0(x)
T (y ´ x)π˚(dx , dy)+O

(
W 1+α(µ,µ0)

)
.

§ A2) Assume that DJµ(¨) is L-smooth.

Here, Fµ0 = ∇DJµ0 (i.e., connect Wasserstein derivative and
Gateaux derivative).

§ A3) Assume that J(¨) satisfies a PŁ inequality of the form

τ ¨

(
J(µ) ´ inf

µ
J(µ)

)θ

ď }∇DJµ(x)}L2(µ)
.
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Performance Guarantee

Theorem
Under A1) to A3) choose at the I-th iterate, as long as

›

›∇DJµi´1(X )
›

›

L2(µi´1)
ą εθ

let
δi = O

(
min

!

1/L,
›

›∇DJµi´1(X )
›

›

1/α
L2(µi´1)

))
.

Then at most rO
(
ε´((1+α)θ/α´1)+/α

)
iterations result in ε error in

value function with a sample complexity of order rO
(
ε´2(1+α)/α

)
of

the initial distribution µ0.
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Performance Guarantee

Theorem
At most rO

(
ε´((1+α)θ/α´1)+/α

)
iterations result in ε error in value

function with a sample complexity of order rO
(
ε´2(1+α)/α

)
of the

initial distribution µ0.

If J(¨) is strongly convex and smooth, this recovers rO(1) com-
plexity. If J(¨) is convex, this recovers rO

(
ε´1

)
complexity. Both

of which are canonical results in finite dimensions.

Jiajin Li (Stanford) Modified Frank-Wolfe in Probability Space 22 / 31



Numerical Results
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Gaussian Deconvolution

§ Observation Yi = Xi + Zi where Zi is Gaussian Noise and you
want to recover the distribution µ (i.e., Xi „ µ).

§ J(µ) = Dσ2(µ,µN) where Dσ2 is so-called entropic
regularization of the 2-Wasserstein distance and µN is the
empirical measure of Y (Rigollet and Weed, 2019).

inf
πX=µ,πY=µN

1
2

ż

}x ´ y}
2
2π(dx , dy) + σ2DKL (π}µ ˆ µN) . (8)
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Gaussian Deconvolution — 2D Case
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Figure: Gaussian Deconvolution 2D
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Gaussian Deconvolution — High Dimension
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Figure: High-dimensional Gaussian deconvolution for d = 64.
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Maxmimum Mean Discrepancy

§ Let H be a reproducing Kernel Hilbert space and define

J(µ) = sup
}f }Hď1

Eµf (X ) ´ Eµnf (X ). (9)

§ Student-Teacher neural network to parameterize f .

§ We compare our method with MMD flow and Kernel Sobolev
descent in term of gradient evaluations and same sample size.
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Maxmimum Mean Discrepancy
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Figure: Student-Teacher Network; The left one is the result for our
Frank-Wolfe method with the uniform strategy λ = 0.05

δ
and the step

size δ is 0.5. The number of particle is 200.
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Take Home Message

§ Optimization over probabilities is a powerful concept connecting
to many areas, including deep learning, variational inference,
deconvolution, etc.

§ We presented a modified Frank-Wolfe method which uses both
planar geometry(i.e., computation) and Wasserstein geometry
(i.e., convergence analysis).

§ We obtain results of independent interest for solving worst-case
expectations for Wasserstein DRO.

Jiajin Li (Stanford) Modified Frank-Wolfe in Probability Space 29 / 31



Take Home Message

§ Optimization over probabilities is a powerful concept connecting
to many areas, including deep learning, variational inference,
deconvolution, etc.

§ We presented a modified Frank-Wolfe method which uses both
planar geometry(i.e., computation) and Wasserstein geometry
(i.e., convergence analysis).

§ We obtain results of independent interest for solving worst-case
expectations for Wasserstein DRO.

Jiajin Li (Stanford) Modified Frank-Wolfe in Probability Space 29 / 31



Take Home Message

§ Optimization over probabilities is a powerful concept connecting
to many areas, including deep learning, variational inference,
deconvolution, etc.

§ We presented a modified Frank-Wolfe method which uses both
planar geometry(i.e., computation) and Wasserstein geometry
(i.e., convergence analysis).

§ We obtain results of independent interest for solving worst-case
expectations for Wasserstein DRO.

Jiajin Li (Stanford) Modified Frank-Wolfe in Probability Space 29 / 31



Reference

§ Carson Kent, Jiajin Li, Jose Blanchet and Peter Glynn.
Modified Frank Wolfe in Probability Space. NeurIPS 2021.

Jiajin Li (Stanford) Modified Frank-Wolfe in Probability Space 30 / 31



Thank you for listening! Q&A?

Jiajin Li

jiajinli@stanford.edu

https://gerrili1996.github.io/
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