Spurious Stationarity and Hardness Results for Bregman Proximal-type Algorithms

Jiajin Li

Sauder School of Business University of British Columbia

September 21, 2024

Joint work with He Chen (CUHK) and Anthony Man-Cho So (CUHK).

1. Spurious stationary points inevitably exist when non-gradient Lipschitz kernels are used for Bregman proximal-type algorithms.

2. (Algorithm-Dependent Hardness Results) Bregman proximal-type algorithms *are unable to* escape from a spurious stationary point in finite steps when the initial point is bad.

1. Spurious stationary points inevitably exist when non-gradient Lipschitz kernels are used for Bregman proximal-type algorithms.

2. (Algorithm-Dependent Hardness Results) Bregman proximal-type algorithms *are unable to* escape from a spurious stationary point in finite steps when the initial point is bad.

- 1. Introduction and Problem Settings
- 2. Spurious Stationary Points and Examples
- 3. Algorithm-Dependent Hardness Results and their Implications
- 4. Unsatisfactory Stationary Measures and Convergence Behaviour Investigation

Mirror Descent (Non-Euclidean Gradient Descent)

$$\min_{\boldsymbol{x}\in\mathbb{R}^n}F(\boldsymbol{x})$$
 (P)

• Gradient Descent:

$$\begin{aligned} \mathbf{x}_{+} &= \mathbf{x} - t \cdot \nabla F(\mathbf{x}) \\ &= \operatorname*{arg\,min}_{\mathbf{y} \in \mathbb{R}^{n}} \nabla F(\mathbf{x})^{\mathsf{T}}(\mathbf{y} - \mathbf{x}) + \frac{1}{2t} \|\mathbf{y} - \mathbf{x}\|^{2}. \end{aligned}$$

• Mirror Descent:

$$\mathbf{x}_+ = \operatorname*{arg\,min}_{\mathbf{y} \in \mathbb{R}^n}
abla F(\mathbf{x})^T (\mathbf{y} - \mathbf{x}) + rac{1}{2t} \qquad \underbrace{D_h(\mathbf{y}, \mathbf{x})}_{t}$$

Bregman Divergence

Better to exploit the geometry of the problem at hand!

Mirror Descent (Non-Euclidean Gradient Descent)

$$\min_{\mathbf{x}\in\mathbb{R}^n}F(\mathbf{x})$$
 (P)

• Gradient Descent:

$$\begin{aligned} \mathbf{x}_{+} &= \mathbf{x} - t \cdot \nabla F(\mathbf{x}) \\ &= \operatorname*{arg\,min}_{\mathbf{y} \in \mathbb{R}^{n}} \nabla F(\mathbf{x})^{\mathsf{T}}(\mathbf{y} - \mathbf{x}) + \frac{1}{2t} \|\mathbf{y} - \mathbf{x}\|^{2}. \end{aligned}$$

r

• Mirror Descent:

$$\mathbf{x}_{+} = rgmin_{\mathbf{y} \in \mathbb{R}^{n}}
abla F(\mathbf{x})^{T}(\mathbf{y} - \mathbf{x}) + rac{1}{2t} \underbrace{D_{h}(\mathbf{y}, \mathbf{x})}_{ ext{Bregman Divergence}}$$

Mirror Descent (Non-Euclidean Gradient Descent)

$$\min_{\mathbf{x}\in\mathbb{R}^n}F(\mathbf{x})$$
 (P)

• Gradient Descent:

$$\begin{aligned} \mathbf{x}_{+} &= \mathbf{x} - t \cdot \nabla F(\mathbf{x}) \\ &= \operatorname*{arg\,min}_{\mathbf{y} \in \mathbb{R}^{n}} \nabla F(\mathbf{x})^{\mathsf{T}}(\mathbf{y} - \mathbf{x}) + \frac{1}{2t} \|\mathbf{y} - \mathbf{x}\|^{2}. \end{aligned}$$

r

• Mirror Descent:

$$oldsymbol{x}_{+} = rgmin_{oldsymbol{y} \in \mathbb{R}^n}
abla F(oldsymbol{x})^T (oldsymbol{y} - oldsymbol{x}) + rac{1}{2t} \underbrace{oldsymbol{D}_h(oldsymbol{y},oldsymbol{x})}_{ ext{Bregman Divergence}}$$

Better to exploit the geometry of the problem at hand!

Definition

The Bregman divergence between two points x, y associated with a kernel function $h : \Omega \to \mathbb{R}$ is defined as

$$D_h(\boldsymbol{x}, \boldsymbol{y}) := h(\boldsymbol{x}) - h(\boldsymbol{y}) - \nabla h(\boldsymbol{y})^T (\boldsymbol{x} - \boldsymbol{y}),$$

where h is continuously differentiable and strictly convex on the convex set Ω .

- (\checkmark) If $h(\mathbf{x}) = \frac{1}{2} ||\mathbf{x}||^2$, we have $D_h(\mathbf{y}, \mathbf{x}) = \frac{1}{2} ||\mathbf{y} \mathbf{x}||^2$. Then, mirror descent reduces to the vanilla gradient descent.
- (X) If $h(\mathbf{x}) = \sum_{i=1}^{n} x_i \log x_i$, $D_h(\mathbf{y}, \mathbf{x})$ is just KL divergence.
- (X) Other non-gradient Lipschitz kernel functions \cdots

$$\min_{\mathbf{x}\in\mathbb{R}^n}F(\mathbf{x}):=f(\mathbf{x})+g(\mathbf{x}). \tag{P}$$

- $dom(g) = \mathcal{X}$ is a nonempty closed convex set.
- $f : \mathcal{X} \to \mathbb{R}$ is continuous differentiable on \mathcal{X} (possibly **nonconvex**).
- $g: \mathcal{X} \to \overline{\mathbb{R}}$ is convex and locally Lipschitz continuous, e.g.,
 - Indicator function -> include the constrained optimization problem as a special case.

Bregman Proximal-Type Algorithms

$$\mathbf{x}_{+} = T_{\gamma}^{t}(\mathbf{x}) := \arg\min_{\mathbf{y} \in \mathbb{R}^{n}} \left\{ \underbrace{\frac{\gamma(\mathbf{y}; \mathbf{x})}{\mathsf{Surrogate Model}}}_{\mathsf{Surrogate Model}} + g(\mathbf{y}) + \frac{1}{t} D_{h}(\mathbf{y}, \mathbf{x}) \right\}$$
(A)

- If $\gamma(\mathbf{y}; \mathbf{x}) = f(\mathbf{y})$, (\mathcal{A}) reduces to Bregman proximal point methods [Chen and Teboulle, 1993].
- If γ(y; x) = f(x) + ∇f(x)^T(y x), (A) reduces to Bregman proximal (projected) gradient descent [Bauschke et al., 2017], [Bauschke et al., 2019].
- If $\gamma(\mathbf{y}; \mathbf{x}) = f(\mathbf{x}) + \nabla f(\mathbf{x})^T (\mathbf{y} \mathbf{x}) + \frac{1}{2} (\mathbf{y} \mathbf{x})^T \nabla^2 f(\mathbf{x}) (\mathbf{y} \mathbf{x})$, (\mathcal{A}) has been recently explored by [Doikov and Nesterov, 2023].

Separable Kernel Functions

- $h(\mathbf{x}) = \sum_{i=1}^{n} \varphi(x_i)$, where $\varphi : \mathbb{R} \to \overline{\mathbb{R}}$ is a univariate function.
- φ is continuously differentiable on $\operatorname{int}(\operatorname{dom}(\varphi))$, and $|\varphi'(x^k)| \to +\infty$ as $x^k \to x \in \operatorname{bd}(\operatorname{dom}(\varphi))$.
- φ is strictly convex.
- 1. Boltzmann–Shannon entropy kernel $h(\mathbf{x}) = \sum_{i=1}^{n} x_i \log(x_i);$
- 2. Fermi-Dirac entropy kernel $h(\mathbf{x}) = \sum_{i=1}^{n} x_i \log(x_i) + (1 x_i) \log(1 x_i);$
- 3. Burg entropy kernel $h(\mathbf{x}) = \sum_{i=1}^{n} -\log(x_i);$
- 4. Fractional power kernel $h(m{x}) = \sum_{i=1}^n p x_i rac{x_i^p}{1-p} \; (0$
- 5. Hellinger entropy kernel $h(\mathbf{x}) = \sum_{i=1}^{n} -\sqrt{1-x_i^2}$.

Separable Kernel Functions

- $h(\mathbf{x}) = \sum_{i=1}^{n} \varphi(x_i)$, where $\varphi : \mathbb{R} \to \overline{\mathbb{R}}$ is a univariate function.
- φ is continuously differentiable on $\operatorname{int}(\operatorname{dom}(\varphi))$, and $|\varphi'(x^k)| \to +\infty$ as $x^k \to x \in \operatorname{bd}(\operatorname{dom}(\varphi))$.
- φ is strictly convex.
- 1. Boltzmann–Shannon entropy kernel $h(\mathbf{x}) = \sum_{i=1}^{n} x_i \log(x_i);$
- 2. Fermi-Dirac entropy kernel $h(\mathbf{x}) = \sum_{i=1}^{n} x_i \log(x_i) + (1 x_i) \log(1 x_i);$
- 3. Burg entropy kernel $h(\mathbf{x}) = \sum_{i=1}^{n} -\log(x_i);$
- 4. Fractional power kernel $h(\mathbf{x}) = \sum_{i=1}^{n} p x_i \frac{x_i^p}{1-p} \ (0$
- 5. Hellinger entropy kernel $h(\mathbf{x}) = \sum_{i=1}^{n} -\sqrt{1-x_i^2}$.

- 1. Introduction and Problem Settings
- 2. Spurious Stationary Points and Examples
- 3. Algorithm-Dependent Hardness Results and their Implications
- 4. Unsatisfactory Stationary Measures and Convergence Behaviour Investigation

Spurious Stationarity

Definition

A point $\mathbf{x} \in \mathcal{X}$ is defined as a *spurious stationary point* of problem (P) if there exists a vector $\mathbf{p} \in \partial F(\mathbf{x})$ satisfying $\mathbf{p}_{\mathcal{I}(\mathbf{x})} = 0$ but $0 \notin \partial F(\mathbf{x})$.

• $\mathcal{I}(\mathbf{x}) := \{i \in [n] : x_i \in \operatorname{int}(\operatorname{dom}(\varphi))\}.$

- Spurious stationary points exist only when the kernel is non-gradient Lipschitz.
- For a kernel h with gradient Lipschitz property, we have dom(φ) = ℝ and I(x) = [n] hold for all x ∈ X, thereby precluding the existence of spurious stationary points.

Only depends on the problem itself and the kernel function!

Spurious Stationarity

Definition

A point $\mathbf{x} \in \mathcal{X}$ is defined as a *spurious stationary point* of problem (P) if there exists a vector $\mathbf{p} \in \partial F(\mathbf{x})$ satisfying $\mathbf{p}_{\mathcal{I}(\mathbf{x})} = 0$ but $0 \notin \partial F(\mathbf{x})$.

- $\mathcal{I}(\mathbf{x}) := \{i \in [n] : x_i \in \operatorname{int}(\operatorname{dom}(\varphi))\}.$
- Spurious stationary points exist only when the kernel is non-gradient Lipschitz.
- For a kernel h with gradient Lipschitz property, we have dom(φ) = ℝ and I(x) = [n] hold for all x ∈ X, thereby precluding the existence of spurious stationary points.

Only depends on the problem itself and the kernel function!

Spurious Stationarity

Definition

A point $\mathbf{x} \in \mathcal{X}$ is defined as a *spurious stationary point* of problem (P) if there exists a vector $\mathbf{p} \in \partial F(\mathbf{x})$ satisfying $\mathbf{p}_{\mathcal{I}(\mathbf{x})} = 0$ but $0 \notin \partial F(\mathbf{x})$.

- $\mathcal{I}(\mathbf{x}) := \{i \in [n] : x_i \in \operatorname{int}(\operatorname{dom}(\varphi))\}.$
- Spurious stationary points exist only when the kernel is non-gradient Lipschitz.
- For a kernel h with gradient Lipschitz property, we have dom(φ) = ℝ and I(x) = [n] hold for all x ∈ X, thereby precluding the existence of spurious stationary points.

Only depends on the problem itself and the kernel function!

Example (A Simple Linear Programming Problem)

Suppose that $cl(dom(h)) = \mathbb{R}^2_+$ and consider the following simple problem:

 $\begin{array}{ll} \min_{x_1,x_2} & -x_1\\ {\rm s.t.} & x_1+x_2=1, x_1, x_2\geq 0. \end{array}$ The point (0,1) is identified as a spurious stationary point.

We find that $0 \notin \partial F((0,1))$ and $\boldsymbol{p} = (-1,0) \in \partial F((0,1))$ with $\boldsymbol{p}_{\mathcal{I}((0,1))} = p_2 = 0$, i.e., $\partial F((0,1)) = \{(-1,0) + \lambda(-1,0) + \mu(1,1) : \lambda \in \mathbb{R}_+, \mu \in \mathbb{R}\}.$

Example (A Simple Linear Programming Problem)

Suppose that $cl(dom(h)) = \mathbb{R}^2_+$ and consider the following simple problem:

 $\begin{array}{ll} \min\limits_{x_1,x_2} & -x_1\\ {\rm s.t.} & x_1+x_2=1, x_1, x_2\geq 0. \end{array}$ The point (0,1) is identified as a spurious stationary point.

We find that $0 \notin \partial F((0,1))$ and $\boldsymbol{p} = (-1,0) \in \partial F((0,1))$ with $\boldsymbol{p}_{\mathcal{I}((0,1))} = p_2 = 0$, i.e., $\partial F((0,1)) = \{(-1,0) + \lambda(-1,0) + \mu(1,1) : \lambda \in \mathbb{R}_+, \mu \in \mathbb{R}\}.$

Nonconvex Example

Example

Suppose that $cl(dom(h)) = \mathbb{R}^2_+$ and consider the following simple problem:

 $\min_{\substack{x_1, x_2 \\ \text{s.t.}}} -x_1^2 + x_2 \\ \text{s.t.} \quad x_1 + x_2 = 1, x_1, x_2 \ge 0.$

The point (0,1) is identified as a spurious stationary point.

Proposition (Existence of Spurious Stationary Points)

Consider a convex optimization problem

Suppose the constraint set is compact and and f is non-constant. If $cl(dom(h)) = \mathbb{R}^n_+$, then every maximal point $\tilde{\mathbf{x}}^* \in \operatorname{argmax}_{\mathbf{x} \in \mathcal{X}} f(\mathbf{x})$ is a spurious stationary point.

Nonconvex Example

Example

Suppose that $cl(dom(h)) = \mathbb{R}^2_+$ and consider the following simple problem:

$$\begin{array}{ll} \min_{x_1, x_2} & -x_1^2 + x_2 \\ \mathrm{s.t.} & x_1 + x_2 = 1, x_1, x_2 \geq 0 \end{array}$$

The point (0,1) is identified as a spurious stationary point.

Proposition (Existence of Spurious Stationary Points)

Consider a convex optimization problem

Suppose the constraint set is compact and and f is non-constant. If $cl(dom(h)) = \mathbb{R}^n_+$, then every maximal point $\tilde{x}^* \in \operatorname{argmax}_{x \in \mathcal{X}} f(x)$ is a spurious stationary point.

- 1. Introduction and Problem Settings
- 2. Spurious Stationary Points and Examples
- 3. Algorithm-Dependent Hardness Results and their Implications
- 4. Unsatisfactory Stationary Measures and Convergence Behaviour Investigation

Theorem

If there exists a spurious stationary point $\tilde{\mathbf{x}}^* \in \mathcal{X}$ for problem (P), then for every $K \in \mathbb{N}$ and $\epsilon > 0$, there exists an initial point $\mathbf{x}^0 \in \mathcal{B}_{\epsilon}(\tilde{\mathbf{x}}^*) \cap \mathcal{X}$, sufficiently close to the spurious stationary point $\tilde{\mathbf{x}}^*$, such that

 $\mathbf{x}^k \in \mathcal{B}_{\epsilon}(\tilde{\mathbf{x}}^*)$ for all $k \in [K]$.

[Corollary 1, Bauschke et al., 2017]. When f is convex, the sequence $\{x^k\}_{k\in\mathbb{N}}$ generated by BPG satisfies

$$f(\mathbf{x}^{k}) - \min_{\mathbf{x} \in \mathcal{X}} f \leq \frac{-\sum_{k \in \mathcal{X}} (\mathbf{x}, \mathbf{x})}{t} \cdot \frac{1}{k},$$

where $\overline{\mathbf{x}} \in \operatorname{argmin}_{\mathbf{x} \in \mathcal{X}} f$ is the global minimizer, t is the step size, and \mathbf{x}^{0} is an arbitrary initial point.

Theorem

If there exists a spurious stationary point $\tilde{\mathbf{x}}^* \in \mathcal{X}$ for problem (P), then for every $K \in \mathbb{N}$ and $\epsilon > 0$, there exists an initial point $\mathbf{x}^0 \in \mathcal{B}_{\epsilon}(\tilde{\mathbf{x}}^*) \cap \mathcal{X}$, sufficiently close to the spurious stationary point $\tilde{\mathbf{x}}^*$, such that

 $\mathbf{x}^k \in \mathcal{B}_{\epsilon}(\tilde{\mathbf{x}}^*)$ for all $k \in [K]$.

[Corollary 1, Bauschke et al., 2017]. When f is convex, the sequence $\{x^k\}_{k \in \mathbb{N}}$ generated by BPG satisfies

$$f(\mathbf{x}^k) - \min_{\mathbf{x} \in \mathcal{X}} f \leq \frac{D_h(\overline{\mathbf{x}}, \mathbf{x}^0)}{t} \cdot \frac{1}{k},$$

where $\overline{\mathbf{x}} \in \operatorname{argmin}_{\mathbf{x} \in \mathcal{X}} f$ is the global minimizer, t is the step size, and \mathbf{x}^0 is an arbitrary initial point.

Visualization

Example (The Simple Linear Programming Problem)

For every K and $\epsilon > 0$, we construct the initial point as

$$\mathbf{x}^{0} = \left(rac{\sqrt{2}\epsilon}{2}e^{-tK}, 1 - rac{\sqrt{2}\epsilon}{2}e^{-tK}
ight)$$

- 1. Introduction and Problem Settings
- 2. Spurious Stationary Points and Examples
- 3. Algorithm-Dependent Hardness Results and their Implications
- 4. Unsatisfactory Stationary Measures and Convergence Behaviour

Understand how the sequence of iterations behaves and how close it gets to convergence.

A standard recipe in optimization:

- Propose a residual function $R: \mathbb{R}^n \to \mathbb{R}_+$ that measures the stationarity of the iterations.
- Estabilish the convergence of the sequence of $\{R(x^k)\}_{k\geq 0}$

$$\lim_{k\to\infty} R(\boldsymbol{x}^k) = 0 \iff 0 \in \partial F\left(\lim_{k\to\infty} \boldsymbol{x}^k\right)$$

Understand how the sequence of iterations behaves and how close it gets to convergence.

A standard recipe in optimization:

- Propose a residual function $R: \mathbb{R}^n \to \mathbb{R}_+$ that measures the stationarity of the iterations.
- Estabilish the convergence of the sequence of $\{R(\mathbf{x}^k)\}_{k\geq 0}$.

$$\lim_{k\to\infty} R(\boldsymbol{x}^k) = 0 \iff 0 \in \partial F\left(\lim_{k\to\infty} \boldsymbol{x}^k\right)$$

Understand how the sequence of iterations behaves and how close it gets to convergence.

A standard recipe in optimization:

- Propose a residual function $R : \mathbb{R}^n \to \mathbb{R}_+$ that measures the stationarity of the iterations.
- Estabilish the convergence of the sequence of $\{R(\mathbf{x}^k)\}_{k\geq 0}$.

$$\lim_{k\to\infty} R(\boldsymbol{x}^k) = 0 \iff 0 \in \partial F\left(\lim_{k\to\infty} \boldsymbol{x}^k\right)$$

All existing stationarity measure can be unified as

$$R_{\gamma}^{t}(\boldsymbol{x}) \coloneqq D_{h}(T_{\gamma}^{t}(\boldsymbol{x}), \boldsymbol{x})$$

the relative change w.r.t Bregman divergence.

• R^t_{γ} is not well-defined on the boundary $\mathrm{bd}(\mathsf{dom}(h))$.

• The mapping $\mathbf{x} \mapsto \mathcal{T}_{\gamma}^{t}(\mathbf{x})$ involves the Bregman divergence function $(\mathbf{y}, \mathbf{x}) \mapsto D_{h}(\mathbf{y}, \mathbf{x})$, which is only defined on dom $(h) \times \operatorname{int}(\operatorname{dom}(h))$.

All existing stationarity measure can be unified as

$$R_{\gamma}^{t}(\boldsymbol{x}) \coloneqq D_{h}(T_{\gamma}^{t}(\boldsymbol{x}), \boldsymbol{x})$$

the relative change w.r.t Bregman divergence.

- R_{γ}^{t} is not well-defined on the boundary $\mathrm{bd}(\mathrm{dom}(h))$.
- The mapping $\mathbf{x} \mapsto T_{\gamma}^{t}(\mathbf{x})$ involves the Bregman divergence function $(\mathbf{y}, \mathbf{x}) \mapsto D_{h}(\mathbf{y}, \mathbf{x})$, which is only defined on dom $(h) \times \operatorname{int}(\operatorname{dom}(h))$.

A simple fix: Only account for the interior coordinates, i.e.,

$$\overline{R}^t_{\gamma}(\mathbf{x})\coloneqq \sum_{i\in\mathcal{I}(\mathbf{x})} D_{arphi}\Big(\overline{T}^t_{\gamma}(\mathbf{x})_i, x_i\Big),$$

where $\overline{T}_{\gamma}^{t}(\mathbf{x})$ denotes the update rule that ensures the boundary coordinates remain fixed.

$$\lim_{k\to\infty} R(\boldsymbol{x}^k) = 0 \iff 0 \in \partial F\left(\lim_{k\to\infty} \boldsymbol{x}^k\right)$$

- The residual function is continuous (✓).
- The residual function equals to zeros if and only if x is a stationary point.
 - If x is a stationary point, we have $\overline{R}_{\gamma}^{t}(x) = 0$ (\checkmark).

•
$$\Rightarrow$$
 ?

A simple fix: Only account for the interior coordinates, i.e.,

$$\overline{R}^t_{\gamma}(\mathbf{x})\coloneqq \sum_{i\in\mathcal{I}(\mathbf{x})} D_{\varphi}\Big(\overline{T}^t_{\gamma}(\mathbf{x})_i, x_i\Big),$$

where $\overline{T}_{\gamma}^{t}(\mathbf{x})$ denotes the update rule that ensures the boundary coordinates remain fixed.

$$\lim_{k\to\infty} R(\boldsymbol{x}^k) = 0 \iff 0 \in \partial F\left(\lim_{k\to\infty} \boldsymbol{x}^k\right)$$

- The residual function is continuous (✓).
- The residual function equals to zeros if and only if x is a stationary point.
 - If x is a stationary point, we have $\overline{R}_{\gamma}^{t}(x) = 0$ (\checkmark).

•
$$\Rightarrow$$
 ?

A simple fix: Only account for the interior coordinates, i.e.,

$$\overline{R}^t_{\gamma}(\mathbf{x})\coloneqq \sum_{i\in\mathcal{I}(\mathbf{x})} D_{\varphi}\Big(\overline{T}^t_{\gamma}(\mathbf{x})_i, x_i\Big),$$

where $\overline{T}_{\gamma}^{t}(\mathbf{x})$ denotes the update rule that ensures the boundary coordinates remain fixed.

$$\lim_{k\to\infty} R(\boldsymbol{x}^k) = 0 \iff 0 \in \partial F\left(\lim_{k\to\infty} \boldsymbol{x}^k\right)$$

- The residual function is **continuous** (\checkmark) .
- The residual function equals to zeros if and only if x is a stationary point.

• If x is a stationary point, we have $\overline{R}_{\gamma}^{t}(x) = 0$ (\checkmark).

• \Rightarrow ?

A simple fix: Only account for the interior coordinates, i.e.,

$$\overline{R}^t_{\gamma}(\mathbf{x})\coloneqq \sum_{i\in\mathcal{I}(\mathbf{x})} D_{\varphi}\Big(\overline{T}^t_{\gamma}(\mathbf{x})_i, x_i\Big),$$

where $\overline{T}_{\gamma}^{t}(\mathbf{x})$ denotes the update rule that ensures the boundary coordinates remain fixed.

$$\lim_{k\to\infty} R(\boldsymbol{x}^k) = 0 \iff 0 \in \partial F\left(\lim_{k\to\infty} \boldsymbol{x}^k\right)$$

- The residual function is **continuous** (✓).
- The residual function equals to zeros if and only if x is a stationary point.
 - If x is a stationary point, we have $\overline{R}_{\gamma}^{t}(x) = 0$ (\checkmark).

• \Rightarrow ?

A simple fix: Only account for the interior coordinates, i.e.,

$$\overline{R}^t_{\gamma}(\mathbf{x})\coloneqq \sum_{i\in\mathcal{I}(\mathbf{x})} D_{\varphi}\Big(\overline{T}^t_{\gamma}(\mathbf{x})_i, x_i\Big),$$

where $\overline{T}_{\gamma}^{t}(\mathbf{x})$ denotes the update rule that ensures the boundary coordinates remain fixed.

$$\lim_{k\to\infty} R(\boldsymbol{x}^k) = 0 \iff 0 \in \partial F\left(\lim_{k\to\infty} \boldsymbol{x}^k\right)$$

- The residual function is **continuous** (✓).
- The residual function equals to zeros if and only if x is a stationary point.
 - If x is a stationary point, we have $\overline{R}_{\gamma}^{t}(x) = 0$ (\checkmark).
 - \Rightarrow ?

A point $\mathbf{x} \in \mathcal{X}$ is a spurious stationary point if and only if $\overline{R}_{\gamma}^{t}(\mathbf{x}) = 0 \text{ but } 0 \notin \partial F(\mathbf{x}).$

- We have demonstrated that spurious stationary points are ubiquitous.
- Can we provide a satisfactory stationarity measure? -> New Bregman-type algorithms...
 - He Chen*, Jiajin Li*, Anthony Man-Cho So*. Spurious Stationarity and Hardness Results for Mirror Descent http://arxiv.org/abs/2404.08073

A point $\mathbf{x} \in \mathcal{X}$ is a spurious stationary point if and only if $\overline{R}_{\gamma}^{t}(\mathbf{x}) = 0 \text{ but } 0 \notin \partial F(\mathbf{x}).$

- We have demonstrated that spurious stationary points are ubiquitous.
- Can we provide a satisfactory stationarity measure? -> New Bregman-type algorithms...

He Chen*, Jiajin Li*, Anthony Man-Cho So*. Spurious Stationarity and Hardness Results for Mirror Descent http://arxiv.org/abs/2404.08073

A point $\mathbf{x} \in \mathcal{X}$ is a spurious stationary point if and only if $\overline{R}_{\gamma}^{t}(\mathbf{x}) = 0 \text{ but } 0 \notin \partial F(\mathbf{x}).$

- We have demonstrated that spurious stationary points are ubiquitous.
- Can we provide a satisfactory stationarity measure? -> New Bregman-type algorithms...

He Chen*, Jiajin Li*, Anthony Man-Cho So*. Spurious Stationarity and Hardness Results for Mirror Descent http://arxiv.org/abs/2404.08073

A point $\mathbf{x} \in \mathcal{X}$ is a spurious stationary point if and only if $\overline{R}_{\gamma}^{t}(\mathbf{x}) = 0 \text{ but } 0 \notin \partial F(\mathbf{x}).$

- We have demonstrated that spurious stationary points are ubiquitous.
- Can we provide a satisfactory stationarity measure? -> New Bregman-type algorithms...

He Chen*, Jiajin Li*, Anthony Man-Cho So*. Spurious Stationarity and Hardness Results for Mirror Descent http://arxiv.org/abs/2404.08073

Thank you for your listening! Any questions?