Spurious Stationarity and Hardness Results for Bregman Proximal-type Algorithms

Jiajin Li

Sauder School of Business University of British Columbia

September 21, 2024

Joint work with He Chen (CUHK) and Anthony Man-Cho So (CUHK).

1. Spurious stationary points inevitably exist when non-gradient Lipschitz kernels are used for Bregman proximal-type algorithms.

1. Spurious stationary points inevitably exist when non-gradient Lipschitz kernels are used for Bregman proximal-type algorithms.

2. (Algorithm-Dependent Hardness Results) Bregman proximal-type algorithms are unable to escape from a spurious stationary point in finite steps when the initial point is bad.

- 1. Introduction and Problem Settings
- 2. Spurious Stationary Points and Examples
- 3. Algorithm-Dependent Hardness Results and their Implications
- 4. Unsatisfactory Stationary Measures and Convergence Behaviour Investigation

Mirror Descent (Non-Euclidean Gradient Descent)

$$
\min_{\mathbf{x} \in \mathbb{R}^n} F(\mathbf{x}) \tag{P}
$$

• Gradient Descent:

$$
\mathbf{x}_{+} = \mathbf{x} - t \cdot \nabla F(\mathbf{x})
$$

= arg min $\nabla F(\mathbf{x})^T (\mathbf{y} - \mathbf{x}) + \frac{1}{2t} ||\mathbf{y} - \mathbf{x}||^2$.

$$
\mathbf{x}_{+} = \argmin_{\mathbf{y} \in \mathbb{R}^{n}} \nabla F(\mathbf{x})^{\top} (\mathbf{y} - \mathbf{x}) + \frac{1}{2t} \underbrace{\mathcal{D}_{h}(\mathbf{y}, \mathbf{x})}_{\sim}
$$

Mirror Descent (Non-Euclidean Gradient Descent)

$$
\min_{\mathbf{x} \in \mathbb{R}^n} F(\mathbf{x}) \tag{P}
$$

.

• Gradient Descent:

$$
\mathbf{x}_{+} = \mathbf{x} - t \cdot \nabla F(\mathbf{x})
$$

= arg min $\nabla F(\mathbf{x})^T (\mathbf{y} - \mathbf{x}) + \frac{1}{2t} ||\mathbf{y} - \mathbf{x}||^2$.

• Mirror Descent:

$$
\mathbf{x}_{+} = \arg\min_{\mathbf{y}\in\mathbb{R}^{n}} \nabla F(\mathbf{x})^{T}(\mathbf{y}-\mathbf{x}) + \frac{1}{2t} \underbrace{D_{h}(\mathbf{y}, \mathbf{x})}_{\text{Bregman Divergence}}
$$

Mirror Descent (Non-Euclidean Gradient Descent)

$$
\min_{\mathbf{x} \in \mathbb{R}^n} F(\mathbf{x}) \tag{P}
$$

.

• Gradient Descent:

$$
\mathbf{x}_{+} = \mathbf{x} - t \cdot \nabla F(\mathbf{x})
$$

= arg min $\nabla F(\mathbf{x})^T (\mathbf{y} - \mathbf{x}) + \frac{1}{2t} ||\mathbf{y} - \mathbf{x}||^2$.

• Mirror Descent:

$$
\mathbf{x}_{+} = \arg\min_{\mathbf{y}\in\mathbb{R}^{n}} \nabla F(\mathbf{x})^{\mathsf{T}}(\mathbf{y}-\mathbf{x}) + \frac{1}{2t} \underbrace{D_{h}(\mathbf{y},\mathbf{x})}_{\text{Bregman Divergence}}
$$

Better to exploit the geometry of the problem at hand!

Definition

The Bregman divergence between two points x, y associated with a kernel function $h: \Omega \to \mathbb{R}$ is defined as

$$
D_h(\mathbf{x}, \mathbf{y}) := h(\mathbf{x}) - h(\mathbf{y}) - \nabla h(\mathbf{y})^T(\mathbf{x} - \mathbf{y}),
$$

where h is continuously differentiable and strictly convex on the convex set Ω .

- \bullet (✓) If $h(x) = \frac{1}{2} ||x||^2$, we have $D_h(y, x) = \frac{1}{2} ||y x||^2$. Then, mirror descent reduces to the vanilla gradient descent.
- (X) If $h(x) = \sum_{i=1}^{n} x_i \log x_i$, $D_h(y, x)$ is just KL divergence.
- (X) Other non-gradient Lipschitz kernel functions \cdots

$$
\min_{\mathbf{x} \in \mathbb{R}^n} F(\mathbf{x}) := f(\mathbf{x}) + g(\mathbf{x}). \tag{P}
$$

- $dom(g) = \mathcal{X}$ is a nonempty closed convex set.
- $f: \mathcal{X} \to \mathbb{R}$ is continuous differentiable on \mathcal{X} (possibly **nonconvex**).
- $g: \mathcal{X} \to \overline{\mathbb{R}}$ is convex and locally Lipschitz continuous, e.g.,
	- Indicator function \rightarrow include the constrained optimization problem as a special case.

Bregman Proximal-Type Algorithms

$$
\mathbf{x}_{+} = T_{\gamma}^{t}(\mathbf{x}) := \underset{\mathbf{y} \in \mathbb{R}^{n}}{\arg \min} \left\{ \underset{\text{Surrogate Model}}{\mathcal{N}(\mathbf{y}; \mathbf{x})} + g(\mathbf{y}) + \frac{1}{t} D_{h}(\mathbf{y}, \mathbf{x}) \right\}
$$
(A)

- If $\gamma(\mathbf{y}; \mathbf{x}) = f(\mathbf{y})$, ([A](#page-9-0)) reduces to Bregman proximal point methods [Chen and Teboulle, 1993].
- \bullet If $\gamma(\bm{y};\bm{x})=f(\bm{x})+\nabla f(\bm{x})^{\mathsf{T}}(\bm{y}-\bm{x})$, (\mathcal{A}) (\mathcal{A}) (\mathcal{A}) reduces to Bregman proximal (projected) gradient descent [Bauschke et al., 2017],[Bauschke et al., 2019].
- If $\gamma(\mathbf{y}; \mathbf{x}) = f(\mathbf{x}) + \nabla f(\mathbf{x})^T (\mathbf{y} \mathbf{x}) + \frac{1}{2} (\mathbf{y} \mathbf{x})^T \nabla^2 f(\mathbf{x}) (\mathbf{y} \mathbf{x}),$ ([A](#page-9-0)) has been recently explored by [Doikov and Nesterov, 2023].

Separable Kernel Functions

- $h(\textbf{x}) = \sum_{i=1}^n \varphi(x_i)$, where $\varphi : \mathbb{R} \to \overline{\mathbb{R}}$ is a univariate function.
- $\bullet \;\varphi$ is continuously differentiable on $\text{int}(\text{dom}(\varphi)),$ and $|\varphi'(x^{k})| \to +\infty$ as $x^k \to x \in \text{bd}(\text{dom}(\varphi)).$
- φ is strictly convex.
-
-
-
-
-

Separable Kernel Functions

- $h(\textbf{x}) = \sum_{i=1}^n \varphi(x_i)$, where $\varphi : \mathbb{R} \to \overline{\mathbb{R}}$ is a univariate function.
- $\bullet \;\varphi$ is continuously differentiable on $\text{int}(\text{dom}(\varphi)),$ and $|\varphi'(x^{k})| \to +\infty$ as $x^k \to x \in \text{bd}(\text{dom}(\varphi)).$
- φ is strictly convex.
- 1. Boltzmann–Shannon entropy kernel $h(\mathbf{x}) = \sum_{i=1}^{n} x_i \log(x_i);$
- 2. Fermi–Dirac entropy kernel $h(\mathbf{x}) = \sum_{i=1}^{n} x_i \log(x_i) + (1 x_i) \log(1 x_i);$
- 3. Burg entropy kernel $h(\mathbf{x}) = \sum_{i=1}^{n} -\log(x_i);$
- 4. Fractional power kernel $h(\textbf{\textit{x}}) = \sum_{i=1}^n p x_i \frac{x_i^p}{1-p}$ $(0 < p < 1);$
- 5. Hellinger entropy kernel $h(\mathbf{x}) = \sum_{i=1}^{n} -\sqrt{1-x_i^2}$.
- 1. Introduction and Problem Settings
- 2. Spurious Stationary Points and Examples
- 3. Algorithm-Dependent Hardness Results and their Implications
- 4. Unsatisfactory Stationary Measures and Convergence Behaviour Investigation

Spurious Stationarity

Definition

A point $x \in \mathcal{X}$ is defined as a spurious stationary point of problem [\(P\)](#page-4-0) if there exists a vector $p \in \partial F(x)$ satisfying $p_{\mathcal{I}(x)} = 0$ but $0 \notin \partial F(x)$.

• $\mathcal{I}(\mathbf{x}) := \{i \in [n] : x_i \in \text{int}(\text{dom}(\varphi))\}.$

- Spurious stationary points exist only when the kernel is **non-gradient Lipschitz**.
- For a kernel h with gradient Lipschitz property, we have $dom(\varphi) = \mathbb{R}$ and $\mathcal{I}(x) = [n]$ hold

Spurious Stationarity

Definition

A point $x \in \mathcal{X}$ is defined as a spurious stationary point of problem [\(P\)](#page-4-0) if there exists a vector $p \in \partial F(x)$ satisfying $p_{\mathcal{I}(x)} = 0$ but $0 \notin \partial F(x)$.

- $\mathcal{I}(\mathbf{x}) := \{i \in [n] : x_i \in \text{int}(\text{dom}(\varphi))\}.$
- Spurious stationary points exist only when the kernel is **non-gradient Lipschitz**.
- For a kernel h with gradient Lipschitz property, we have $\text{dom}(\varphi) = \mathbb{R}$ and $\mathcal{I}(\mathbf{x}) = [n]$ hold for all $x \in \mathcal{X}$, thereby precluding the existence of spurious stationary points.

Spurious Stationarity

Definition

A point $x \in \mathcal{X}$ is defined as a spurious stationary point of problem [\(P\)](#page-4-0) if there exists a vector $p \in \partial F(x)$ satisfying $p_{\mathcal{I}(x)} = 0$ but $0 \notin \partial F(x)$.

- $\mathcal{I}(\mathbf{x}) := \{i \in [n] : x_i \in \text{int}(\text{dom}(\varphi))\}.$
- Spurious stationary points exist only when the kernel is **non-gradient Lipschitz**.
- For a kernel h with gradient Lipschitz property, we have $\text{dom}(\varphi) = \mathbb{R}$ and $\mathcal{I}(\mathbf{x}) = [n]$ hold for all $x \in \mathcal{X}$, thereby precluding the existence of spurious stationary points.

Only depends on the problem itself and the kernel function!

Example (A Simple Linear Programming Problem)

Suppose that $\text{cl}(\text{dom}(\mathcal{h}))=\mathbb{R}_+^2$ and consider the following simple problem:

 $min -x_1$ X_1, X_2 s.t. $x_1 + x_2 = 1$, $x_1, x_2 > 0$. The point (0,1) is identified as a spurious stationary point.

Example (A Simple Linear Programming Problem)

Suppose that $\text{cl}(\text{dom}(\mathcal{h}))=\mathbb{R}_+^2$ and consider the following simple problem:

 $min -x_1$ X_1, X_2 s.t. $x_1 + x_2 = 1, x_1, x_2 > 0.$ The point (0,1) is identified as a spurious stationary point.

We find that $0 \notin \partial F((0,1))$ and $p = (-1,0) \in \partial F((0,1))$ with $p_{\mathcal{I}((0,1))} = p_2 = 0$, i.e., $\partial F((0,1)) = \{(-1,0) + \lambda(-1,0) + \mu(1,1) : \lambda \in \mathbb{R}_+, \mu \in \mathbb{R}\}.$

Nonconvex Example

Example

Suppose that $\text{cl}(\text{dom}(h)) = \mathbb{R}_+^2$ and consider the following simple problem:

$$
\min_{x_1, x_2} -x_1^2 + x_2
$$

s.t. $x_1 + x_2 = 1, x_1, x_2 \ge 0$.

The point (0,1) is identified as a spurious stationary point.

Nonconvex Example

Example

Suppose that $\text{cl}(\text{dom}(h)) = \mathbb{R}_+^2$ and consider the following simple problem:

$$
\min_{x_1, x_2} -x_1^2 + x_2
$$

s.t. $x_1 + x_2 = 1, x_1, x_2 \ge 0$.

The point (0,1) is identified as a spurious stationary point.

Proposition (Existence of Spurious Stationary Points)

Consider a convex optimization problem

$$
\min_{\mathbf{x} \in \mathcal{X}} f(\mathbf{x})
$$

s.t. $A\mathbf{x} = \mathbf{b}, \mathbf{x} \ge 0$.

Suppose the constraint set is compact and and f is non-constant. If $\text{cl}(\text{dom}(h)) = \mathbb{R}^n_+$, then every maximal point $\tilde{x}^* \in \operatorname{argmax}_{x \in \mathcal{X}} f(x)$ is a spurious stationary point.

- 1. Introduction and Problem Settings
- 2. Spurious Stationary Points and Examples
- 3. Algorithm-Dependent Hardness Results and their Implications
- 4. Unsatisfactory Stationary Measures and Convergence Behaviour Investigation

Theorem

If there exists a spurious stationary point $\tilde{x}^* \in \mathcal{X}$ for problem [\(P\)](#page-4-0), then for every $K \in \mathbb{N}$ and $\epsilon>0$, there exists an initial point ${\bf x}^0\in\mathcal B_\epsilon(\tilde{\bf x}^*)\cap\mathcal X$, sufficiently close to the ${\rm spurious}$ stationary point $\tilde{\mathbf{x}}^*$, such that

 $\mathbf{x}^k \in \mathcal{B}_{\epsilon}(\tilde{\mathbf{x}}^*)$ for all $k \in [\mathcal{K}].$

$$
f(x^{k}) - \min_{x \in \mathcal{X}} f \leq \frac{\overbrace{D_{h}(\overline{x}, x^{0})}^{ \text{the integer}}}{t} \cdot \frac{1}{k},
$$

Theorem

If there exists a spurious stationary point $\tilde{x}^* \in \mathcal{X}$ for problem [\(P\)](#page-4-0), then for every $K \in \mathbb{N}$ and $\epsilon>0$, there exists an initial point ${\bf x}^0\in\mathcal B_\epsilon(\tilde{\bf x}^*)\cap\mathcal X$, sufficiently close to the ${\rm spurious}$ stationary point $\tilde{\mathbf{x}}^*$, such that

 $\mathbf{x}^k \in \mathcal{B}_{\epsilon}(\tilde{\mathbf{x}}^*)$ for all $k \in [\mathcal{K}].$

[Corollary 1, Bauschke et al., 2017]. When f is convex, the sequence $\{x^k\}_{k\in\mathbb{N}}$ generated by BPG satisfies Extremely Large

$$
f(\mathbf{x}^k) - \min_{\mathbf{x} \in \mathcal{X}} f \leq \frac{\overbrace{D_h(\overline{\mathbf{x}}, \mathbf{x}^0)}^{Lauge}}{t} \cdot \frac{1}{k},
$$

where $\overline{\mathbf{x}}\in\mathop{\rm argmin}_{\mathbf{x}\in\mathcal{X}}f$ is the global minimizer, t is the step size, and \mathbf{x}^0 is an arbitrary initial point.

Visualization

Example (The Simple Linear Programming Problem)

For every K and $\epsilon > 0$, we construct the initial point as

$$
\mathbf{x}^0 = \left(\frac{\sqrt{2}\epsilon}{2}e^{-t\mathsf{K}}, 1 - \frac{\sqrt{2}\epsilon}{2}e^{-t\mathsf{K}}\right).
$$

- 1. Introduction and Problem Settings
- 2. Spurious Stationary Points and Examples
- 3. Algorithm-Dependent Hardness Results and their Implications
- 4. Unsatisfactory Stationary Measures and Convergence Behaviour

Understand how the sequence of iterations behaves and how close it gets to convergence.

- Propose a residual function $R:\mathbb{R}^n\to\mathbb{R}_+$ that measures the stationarity of the iterations.
- Estabilish the convergence of the sequence of $\{R(\mathbf{x}^k)\}_{k\geq 0}$.

$$
\lim_{k \to \infty} R(\mathbf{x}^k) = 0 \iff 0 \in \partial F\left(\lim_{k \to \infty} \mathbf{x}^k\right)
$$

Understand how the sequence of iterations behaves and how close it gets to convergence.

A standard recipe in optimization:

- Propose a residual function $R : \mathbb{R}^n \to \mathbb{R}_+$ that measures the stationarity of the iterations.
- Estabilish the convergence of the sequence of $\{R(\mathbf{x}^k)\}_{k\geq 0}$.

Understand how the sequence of iterations behaves and how close it gets to convergence.

A standard recipe in optimization:

- Propose a residual function $R : \mathbb{R}^n \to \mathbb{R}_+$ that measures the stationarity of the iterations.
- Estabilish the convergence of the sequence of $\{R(\mathbf{x}^k)\}_{k\geq 0}$.

$$
\lim_{k \to \infty} R(\mathbf{x}^k) = 0 \iff 0 \in \partial F\left(\lim_{k \to \infty} \mathbf{x}^k\right)
$$

All existing stationarity measure can be unified as

$$
R^t_\gamma(\boldsymbol{x}) \coloneqq D_h(\mathcal{T}^t_\gamma(\boldsymbol{x}),\boldsymbol{x})
$$

the relative change w.r.t Bregman divergence.

• R^t_γ is not well-defined on the boundary $\mathrm{bd}(\mathsf{dom}(h)).$

 \bullet The mapping ${\pmb x} \mapsto \mathcal{T}_{\gamma}^t({\pmb x})$ involves the Bregman divergence function $({\pmb y}, {\pmb x}) \mapsto D_h({\pmb y}, {\pmb x}),$

All existing stationarity measure can be unified as

$$
R^t_\gamma(\boldsymbol{x}) \coloneqq D_h(\mathcal{T}^t_\gamma(\boldsymbol{x}),\boldsymbol{x})
$$

the relative change w.r.t Bregman divergence.

- R^t_γ is not well-defined on the boundary $\mathrm{bd}(\mathsf{dom}(h)).$
- \bullet The mapping ${\bm x} \mapsto \mathcal{T}_{\gamma}^t({\bm x})$ involves the Bregman divergence function $({\bm y}, {\bm x}) \mapsto D_h({\bm y}, {\bm x}),$ which is only defined on $dom(h) \times int(dom(h))$.

A simple fix: Only account for the **interior coordinates**, i.e.,

$$
\overline{R}^t_\gamma(\mathbf{x}) \coloneqq \sum_{i \in \mathcal{I}(\mathbf{x})} D_\varphi \left(\overline{T}^t_\gamma(\mathbf{x})_i, x_i \right),
$$

where $\overline{\mathcal{T}}^t_\varepsilon$ $\zeta_{\gamma}(\pmb{x})$ denotes the update rule that ensures the boundary coordinates remain fixed.

$$
\lim_{k \to \infty} R(\mathbf{x}^k) = 0 \iff 0 \in \partial F\left(\lim_{k \to \infty} \mathbf{x}^k\right)
$$

- The residual function is continuous (✓).
- The residual function equals to zeros if and only if x is a stationary point.
	- If x is a stationary point, we have $\overline{R}_{\gamma}^{t}(x)=0$ (\checkmark).

$$
\bullet \;\Rightarrow ?
$$

A simple fix: Only account for the **interior coordinates**, i.e.,

$$
\overline{R}^t_\gamma(\mathbf{x}) \coloneqq \sum_{i \in \mathcal{I}(\mathbf{x})} D_\varphi \left(\overline{T}^t_\gamma(\mathbf{x})_i, x_i \right),
$$

where $\overline{\mathcal{T}}^t_\varepsilon$ $\zeta_{\gamma}(\pmb{x})$ denotes the update rule that ensures the boundary coordinates remain fixed.

$$
\lim_{k \to \infty} R(\mathbf{x}^k) = 0 \iff 0 \in \partial F\left(\lim_{k \to \infty} \mathbf{x}^k\right)
$$

- The residual function is continuous (✓).
- The residual function equals to zeros if and only if x is a stationary point.
	- If x is a stationary point, we have $\overline{R}_{\gamma}^{t}(x)=0$ (\checkmark).

$$
\bullet \;\Rightarrow ?
$$

A simple fix: Only account for the **interior coordinates**, i.e.,

$$
\overline{R}^t_\gamma(\mathbf{x}) \coloneqq \sum_{i \in \mathcal{I}(\mathbf{x})} D_\varphi \left(\overline{T}^t_\gamma(\mathbf{x})_i, x_i \right),
$$

where $\overline{\mathcal{T}}^t_\varepsilon$ $\zeta_{\gamma}(\pmb{x})$ denotes the update rule that ensures the boundary coordinates remain fixed.

$$
\lim_{k \to \infty} R(\mathbf{x}^k) = 0 \iff 0 \in \partial F\left(\lim_{k \to \infty} \mathbf{x}^k\right)
$$

- The residual function is continuous (✓).
- The residual function equals to zeros if and only if x is a stationary point.

• If x is a stationary point, we have $\overline{R}_{\gamma}^{t}(x)=0$ (\checkmark).

A simple fix: Only account for the **interior coordinates**, i.e.,

$$
\overline{R}^t_\gamma(\mathbf{x}) \coloneqq \sum_{i \in \mathcal{I}(\mathbf{x})} D_\varphi \left(\overline{T}^t_\gamma(\mathbf{x})_i, x_i \right),
$$

where $\overline{\mathcal{T}}^t_\varepsilon$ $\zeta_{\gamma}(\pmb{x})$ denotes the update rule that ensures the boundary coordinates remain fixed.

$$
\lim_{k \to \infty} R(\mathbf{x}^k) = 0 \iff 0 \in \partial F\left(\lim_{k \to \infty} \mathbf{x}^k\right)
$$

- The residual function is continuous (✓).
- The residual function equals to zeros if and only if x is a stationary point.
	- If x is a stationary point, we have $\overline{R}_{\gamma}^{t}(x)=0$ (\checkmark).

A simple fix: Only account for the **interior coordinates**, i.e.,

$$
\overline{R}^t_\gamma(\mathbf{x}) \coloneqq \sum_{i \in \mathcal{I}(\mathbf{x})} D_\varphi \left(\overline{T}^t_\gamma(\mathbf{x})_i, x_i \right),
$$

where $\overline{\mathcal{T}}^t_\varepsilon$ $\zeta_{\gamma}(\pmb{x})$ denotes the update rule that ensures the boundary coordinates remain fixed.

$$
\lim_{k \to \infty} R(\mathbf{x}^k) = 0 \iff 0 \in \partial F\left(\lim_{k \to \infty} \mathbf{x}^k\right)
$$

- The residual function is continuous (✓).
- The residual function equals to zeros if and only if x is a stationary point.
	- If x is a stationary point, we have $\overline{R}_{\gamma}^{t}(x)=0$ (\checkmark).
	- $\bullet \Rightarrow ?$

A point $x \in \mathcal{X}$ is a spurious stationary point if and only if \overline{R}_{i}^{t} $\zeta_{\gamma}(\mathbf{x})=0$ but $0 \notin \partial F(\mathbf{x}).$

- We have demonstrated that spurious stationary points are ubiquitous.
- Can we provide a satisfactory stationarity measure? -> New Bregman-type algorithms...
	-

A point $x \in \mathcal{X}$ is a spurious stationary point if and only if \overline{R}_{i}^{t} $\zeta_{\gamma}(\mathbf{x})=0$ but $0 \notin \partial F(\mathbf{x}).$

- We have demonstrated that spurious stationary points are ubiquitous.
- Can we provide a satisfactory stationarity measure? -> New Bregman-type algorithms...
	-

A point $x \in \mathcal{X}$ is a spurious stationary point if and only if \overline{R}_{i}^{t} $\zeta_{\gamma}(\mathbf{x})=0$ but $0 \notin \partial F(\mathbf{x}).$

- We have demonstrated that spurious stationary points are ubiquitous.
- Can we provide a satisfactory stationarity measure? -> New Bregman-type algorithms...

A point $x \in \mathcal{X}$ is a spurious stationary point if and only if \overline{R}_{i}^{t} $\zeta_{\gamma}(\mathbf{x})=0$ but $0 \notin \partial F(\mathbf{x}).$

- We have demonstrated that spurious stationary points are ubiquitous.
- Can we provide a satisfactory stationarity measure? -> New Bregman-type algorithms...

He Chen*, Jiajin Li*, Anthony Man-Cho So*. Spurious Stationarity and Hardness Results for Mirror Descent http://arxiv.org/abs/2404.08073

Thank you for your listening! Any questions?